
BIANCA/BRICK

Software Reference

Version 2.3 July 1999
Document # 71040A

Copyright © 1999 BinTec Communications AG
All rights reserved

NOTE
The information in this manual is subject to change without notice.

This manual provides a description of the system software for the BinTec BIANCA/BRICK
family of ISDN multiprotocol routers.

While every effort has been made to ensure the accuracy of all information in this docu-
ment, BinTec Communications AG assumes no liability to any party for any loss or damage
caused by errors or omissions or by statements of any kind in this document.

The information in this manual is subject to change without notice. For additions or
changes to this document please refer to the most recent version of this document and/or
separate Release Notes which are available at BinTec’s World Wide Web server at:

http://www.bintec.de

BinTec and the BinTec logo are registered trademarks of BinTec Communications AG.
All other product names and trademarks are the property of their respective companies.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means – graphic, electronic, or
mechanical – including photocopying, recording in any medium, taping, or storage in an information retrieval systems, without the prior
written permission of the copyright owner.

BinTec Communications AG July 1999

http://www.bintec.de

w
w.

bi
nt

ec
.d

e

Table of Contents

■ Introduction
■ Purpose of this document ... 2
■ How to get the latest software and documentation 2
■ How this document is organized .. 2

Sections ... 2
Document Navigation .. 3

■ What's included in this document .. 5
■ Conventions used in this guide ... 7

■BRICK Features
■ ISDN Features ... 9

ISDN Protocol Support .. 9
V.110 Support .. 9
ISDN Callback Support .. 9

■ IP Features ... 10
DHCP Server .. 10
w

BIANCA/BRICK

Software Reference
Version 2.3

Contents
BIANCA/BRIC
III

K Software Reference

w
w

w.
bi

nt
ec

.d
e

DNS and WINS (NBNS) Negotiation over PPP 10
Dynamic IP Address Assignment .. 10
Extended IP Routing ... 11
IP Session Accounting .. 11
Network Address Translation ... 12
Proxy ARP .. 12
RIP Support .. 13
OSPF ... 13

■ Security Features .. 13
Web based Monitoring .. 13
RADIUS support ... 14
IP Access Lists ... 14
Bridge Filtering .. 15
ISDN Call Screening ... 15

■The SNMP shell
■ SNMP Explained .. 17

Overview ... 17
The MIB .. 18

■ SNMP Shell Overview .. 22
The Shell Prompt ... 22
Command Line Editing ... 22
Object Types ... 23
Shell Commands .. 25
External Commands ... 34

■ BRICK System Tables ... 45
Short vs. Long Names ... 46
Creating Table Entries .. 47
Deleting Table Entries ... 49
Editing Table Entries .. 49

■ BRICK Interfaces ... 51
Special Interfaces ... 52
IV

BIANCA/BRICK Software Reference

w
w

w.
bi

nt
ec

.d
e

Hardware Interfaces .. 53
Software Interfaces ... 55

■ BRICK Configuration Files .. 57
Managing FLASH files ... 57
Transferring Files with TFTP .. 62
Transferring Files with XMODEM via Serial Port 66
Rebooting the System .. 67

■ ISDN Connections on the BRICK
■ Some background on ISDN .. 69

B and D Channels ... 69
ISDN Interfaces ... 70
Called & Calling Party’s Numbers ... 71
ISDN Screening Indicator ... 72

■ Attached ISDN hardware .. 73
ISDN Auto Configuration .. 73

■ ISDN Call Dispatching ... 75
Overview ... 75
Dispatching Algorithm .. 76
Outgoing Calls .. 85

■ ISDN Line Management ... 85
ShortHold ... 85
Bandwidth on Demand .. 85
Multiple Link Support .. 85

■System Administration on the BRICK
■ System Logging on the BRICK .. 87

Accounting Messages and System Messages 88
■ Gathering Accounting Information ... 93

ISDN Accounting Information .. 93
Credits Based Accounting System ... 93
IP Accounting Information ... 97
V

BIANCA/BRICK Software Reference

w
w

w.
bi

nt
ec

.d
e

■ Logging with Remote LogHosts ... 99
■ Remote SNMP Administration .. 101

Traps ... 101
■ Web Based Monitoring ... 103
■ User Accounts ... 109
■ Other Passwords ... 111
■ System Software Updates .. 111

What’s Needed ... 111
Performing a System Software Update ... 112

■ BOOT Options on the BRICK .. 113
The BOOTmonitor .. 113
Booting via BootP .. 116
BootP Relay Agent .. 117

■ Other System Administration Tasks .. 118
Setting Up a BootP Server .. 118
Setting up a TFTP Server .. 119
Setting Up a syslog Daemon ... 121
Setting up a Time Server .. 123

■Configuring the BRICK as a Bridge
■ Background on Bridging .. 126
■ Bridging with the BRICK .. 127

Bridging Features .. 127
■ Configuring Bridging on the BRICK .. 132

Enabling Bridging ... 132
Bridge Initialization ... 132

■ Using the BRICK as a Bridge ... 134
Bridging between LANs .. 134
Bridging over WAN Links .. 136
Controlling Bridging Activity Using Filters 140
VI

BIANCA/BRICK Software Reference

w
w

w.
bi

nt
ec

.d
e

■Configuring the BRICK as an IP Router
■ TCP/IP Primer .. 144

Encapsulation ... 145
IP Addressing .. 147
Subnetting ... 148
Protocols, Ports and Sockets ... 150

■ IP Routing Protocols ... 153
RIP .. 153
OSPF ... 153
The Point-to-Point Protocol .. 164

■ DialUp IP Interfaces ... 166
Creating a DialUp IP Interface .. 167
DialUp Options .. 170

■ Dual IP Address Interfaces .. 181
■ IP Routing on the BRICK .. 183
■ Extended IP Routing .. 184

Route Priority ... 185
Configuring Extended Routes .. 185

■ BOOTP and DHCP ... 190
BootP Relay Agent Settings ... 191
DHCP Server Setting ... 193

■ DNS and WINS Addresses over PPP .. 197
■ Dynamic IP Address Assignment .. 199

Server Mode .. 199
Client Mode .. 204

■ Routing with OSPF ... 204
OSPF System Tables .. 204
Example OSPF Installation ... 205
Import - Export of Routing Information ... 217

■ Advanced IP Features .. 219
VII

BIANCA/BRICK Software Reference

w
w

w.
bi

nt
ec

.d
e

IP Session Accounting .. 219
Network Address Translation ... 219
Proxy ARP .. 228
RIP Options .. 230
Back Route Verify ... 231

■Configuring the BRICK as an IPX Router
■ Introduction to IPX .. 233

IPX Stations: Servers and Clients ... 233
IPX Networks: Network Numbers and Addresses 234

■ Configuring IPX Routing ... 235
Adding Routes and Services ... 235
Learning Routes and Services ... 237
Filtering IPX Packets ... 237

■Using the BRICK as a CAPI Server
■ Background on CAPI ... 240

Register Connect Release ... 240
Message Queues ... 241

■ The Remote CAPI .. 242
■ CAPI Settings on the BRICK ... 243

CAPI System Tables .. 243
CAPI TCP Port .. 247

■ Tracing CAPI Connections .. 247
■ CAPI Features and Enhancements Supported

by the BRICK ... 249
CAPI 1.1 Enhancements .. 249
BinTec Extensions to CAPI 1.1 .. 249
CAPI 2.0 Enhancements .. 253
BinTec Extensions to CAPI 2.0 .. 253
VIII

BIANCA/BRICK Software Reference

w
w

w.
bi

nt
ec

.d
e

■Telephony Services on the BRICK
■ Telephony Services on The BRICK .. 257
■ What is POTS? ... 258

POTS Interfaces ... 258
■ What is TAPI? .. 262

Remote TAPI on the BRICK ... 263
■ Configuring Telephony Services ... 264

Two workspaces: two telephones, one V!CAS 264
One workspace: one V!CAS, one telephone, one fax 268

■CAPI Information Values
■ CAPI 1.1 Info Values ... 270
■ CAPI 2.0 Info Values ... 274

■Ethernet Framing
■ Ethernet Framing Types .. 281

Ethernet II ... 281
Ethernet LLC ... 281
Ethernet SNAP ... 282
Novell 802.3 ... 282
Token Ring ... 283

■ ISDN Error Codes
■ Local Causes (BRICK) ... 285
■ DSS1 Causes (Euro ISDN) ... 286
■ 1TR6 Causes (National ISDN) .. 293
IX

BIANCA/BRICK Software Reference

w
w

w.
bi

nt
ec

.d
e

■Syslog Messages
■ System Messages ... 296

ISDN .. 296
IPX .. 298
CAPI ... 299
PPP .. 299
Bridge .. 303
Config .. 304
SNMP .. 304
INET ... 305
Token ... 308
Ether ... 309
Radius .. 310
RIP .. 311
Frame Relay .. 311
Modem .. 312
TAPI .. 312

■Glossary of Networking Terms
X

BIANCA/BRICK Software Reference

1

Introduction

What’s Covered?

■ Purpose of this document

■ How to get the latest software and
documentation

■ How this document is organized
• Sections
• Document Navigation

■ What's included in this document

■ Conventions used in this guide
BIANCA/BRICK Software Reference
Chapter One
1INTRODUCTION
1

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Purpose of this document
The BIANCA/BRICK Software Reference is provided in electronic form (Adobe’s PDF
(Portable Document Format)) as an addition to your printed documentation. This doc-
ument describes the system software used on the BIANCA/BRICK family of routers:
BRICK-XS, BRICK-XM, BRICK-XL, BRICK-XMP, BinGO!, BinGO Plus, and V!CAS.
Note however that some information contained in this document is specific to certain
hardware that may not be present on all products.

This document explains the BRICK system software in greater detail than covered
in your printed documentation. The configuration examples contained throughout this
manual are based on the BRICK’s SNMP shell-interface. For a shorter description of
configuring a particular BRICK feature please refer to your printed (or the online ver-
sion) User’s Guide or the online Extended Feature Reference from the Companion CD.

How to get the latest software and documentation
BinTec provides the most current versions of Software and Documentation via the
World Wide Web (WWW). Our WWW server can be reached at:

http://www.bintec.de

Among other information you will find the most recent versions of:

• User Documentation for BIANCA/BRICK software/hardware.
• System Software images for your BIANCA/BRICK product.
• Release Notes for information about new features implemented for your

BRICK or BinGO! system.
• Windows Software and UNIX Tools applications.
• Additional information (such as FAQs, White Papers, or other Product Infor-

mation) that may be useful when working with your new BinTec router.

How this document is organized

Sections
Section 1 (chapters 1 - 5) contains information of general interest for individuals ad-

ministrating the BIANCA/BRICK.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

2

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Section 2 (chapter 6 - 12) consists of detailed information relating to specific subsys-
tems of the BIANCA/BRICK. Separate chapters are provided for IP Routing, IPX Rout-
ing, X.25 Routing, etc.

Section 3 (appendices A - E, and Glossary) contains supplemental reference material
that may be useful when working with BIANCA/BRICK.

Document Navigation
In addition to the navigational aids provided by your PDF viewer application we have
provided hypertext links (or hot-links) so you can quickly jump to other locations or
supplemental material in your documentation.

Hyper Tabs

Fe
a

ture
s

Intro
d

uc
tio

n

Use the chapter-tabs located
along the right edge of the page
so to jump to the beginning of a
selected chapter within the cur-
rent section.

Use the section-tabs, (Up and Down triangles) to
jump to the previous or next sections.
Note:

In Section 1, Up takes you to the Table of Contents.
In Section 3, Down takes you to the Index.
GLos Geht’s
 etting Started User’s Guide BRICKware Extended Feature

3

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Other Documents
Hot -links to other documents accompanying your BIANCA/BRICK
product are located along the bottom of the page.
Note: These links are encoded relative to the current document.

If you’re not viewing this document from the Companion CD (perhaps
you’ve retrieved the newest version of this document via the WWW), the
PDF files shown below must be located in the same directory (or via an
appropriate UNIX file system link) as this document (and be named ex-
actly as shown) for the links to work properly.

getstart.pdflosgehts.pdf usrguide.pdf bwarewin.pdf
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

ef_ref.pdf
Los Geht
 Getting Started’s User’s Guide BRICKware Extended Feature

4

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

What's included in this document
Chapter 1 Introduction is this chapter.

Chapter 2 BRICK Features gives you a brief overview of some of the important fea-
tures provided by your BIANCA/BRICK. Configuring and using these features is
described in greater detail in the remaining chapters of this book.

Chapter 3 The SNMP shell describes the BRICK’s SNMP shell, or command line in-
terface. This chapter will help you understand some of the fundamental concepts
used on the BRICK and become familiar with manipulating SNMP tables and vari-
ables from the command line.

Chapter 4 ISDN Connections on the BRICK describes how the BRICK handles
ISDN connections and also includes some basic background information for those
not familiar with ISDN networks.

Chapter 5 System Administration on the BRICK deals with administering the
BRICK from the SNMP shell as well as concepts that apply to system administration
in general.

Chapter 6 Configuring the BRICK as a Bridge describes using your BRICK as a
bridge.

Chapter 7 Configuring the BRICK as an IP Router describes using your BRICK as
an IP router. Considering the BRICK is first and foremost an IP router, this chapter
is by far the biggest chapter.

Chapter 8 Configuring the BRICK as an IPX Router describes using your BRICK
as an IPX router to connect local and remote sites/LANs via Novell’s IPX (Internet
Packet Exchange) protocol.

Chapter 9 Using the BRICK as a CAPI Server covers the CAPI subsystem on the
BRICK, and describes how you can use the BRICK to provide CAPI services (access
to ISDN lines) to remote hosts on the LAN.

Se
c

tio
n

O
ne

Se
c

tio
n

Tw
o

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

5

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Chapter 10 Telephony Services on The BRICK covers the TAPI subsystem on the
BRICK. This chapter describes how you can use the BRICK as a TAPI server to pro-
vide access to telephony services (analog lines) to remote hosts on the LAN running
TAPI applications.

Appendix A CAPI Information Values contains CAPI 1.1 and CAPI 2.0 info values
and their appropriate error-codes. This information is included for administrators
that may need to debug CAPI applications using the BRICK as a CAPI server.

Appendix B Ethernet Framing describes the various frame formats the BRICK uses
when sending data over LAN interfaces.

Appendix C ISDN Error Codes contains error codes used in Euro-ISDN and nation-
al ISDN (1TR6) in Germany, as well as some local error codes used on the BRICK.
These will be useful for administrators dealing with problems involving ISDN sig-
nalling problems.

Appendix E Syslog Messages describes some of the system logging messages gen-
erated on the BRICK during special system events.

The Glossary of Networking Terms contains a brief listing of some of the more
common acronyms and terms used throughout your user documentation and the
networking field.

Se
c.

 T
w

o
Se

c
tio

n
Th

re
e

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

6

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Conventions used in this guide
To help you locate and interpret information easily, the following visual clues and ty-
pographic conventions are used throughout this manual.

Visual Clues

This symbol is used to point out references to
other helpful information such as man pages,
other documents or chapters.

This symbol is used to point out special informa-
tion regarding safety concerns, possible error
conditions, or hard-/software limitations.

Text displayed on a shaded background represents an
example SNMP shell session, i.e., commands entered at the
shell prompt and the output written to the screen.

Typographic Conventions

Bold constant width font is used within paragraph text
to represent characters you enter on the command line.

Bold italic text represents system variables or table names

Blue underlined text is used to represent clickable hypertext
references (or hot links) to other documents or sections.

Text enclosed in a box like this; represents a refer-
ence to a menu or submenu within Setup Tool.

?

mybrick:ipRouteTable > ping 10.1.1.5
64 bytes from 10.1.1.5 icmp_seq=0. time=1. ms
----10.1.1.5 PING Statistics----
1 packets transmitted, 1packets received, 0% packet loss
round-trip (ms) min/avg/max = 1/1/1
mybrick:ipRouteTable >

SYSTEM
GLos Geht’s
 etting Started User’s Guide BRICKware Extended Feature

7

2

BRICK Features

What’s Covered?
BIANCA/
■ ISDN Features
• ISDN Protocol Support
• V.110 Support
• ISDN Callback Support

■ IP Features
• DHCP Server
• DNS and WINS (NBNS) Ne-

gotiation over PPP
• Dynamic IP Address Assign-

ment
• Extended IP Routing
• IP Session Accounting
• Network Address Translation
• Proxy ARP
• RIP Support
• OSPF
BRICK Software Reference
■ Security Features
• Web based Monitoring
• RADIUS support
• IP Access Lists
• Bridge Filtering
• ISDN Call Screening
Chapter Two
1BRICK FEATURES

As a multiprotocol ISDN router, the BRICK supports too many networking protocols
and ISDN features to cover in detail in a single chapter. The configuration of many of
these features are tucked away in the BRICK’s systems tables and can only be ex-
plained in light of their usage. This chapter gives you an overview of the major features
found on the BRICK and references other locations within this document where they
are explained in more detail.
8

w
w

w.
bi

nt
ec

.d
e

Intro
d

uc
tio
ISDN Features
SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

n

Los Geh
ISDN Protocol Support
The BRICK supports the following ISDN protocols:

• Euro ISDN (Europe) • 1TR6 National ISDN in Germany
• National ISDN 1 (USA) • Northern Telecom DMS-100 (USA)
• National ISDN 2 (USA) • AT&T 5ESS Custom ISDN (USA)
• NTT INS64 ISDN (Japan)

V.110 Support
V.110 is a ITU-T standard that defines the communications procedures to
use when a communications device can’t match the data rates offered by an
ISDN and is aptly called bit rate adaption. Basically the transmitter and re-
ceiver have to agree to add additional bits during transmission to adjust the
data rate to a mutually compatible rate. Asynchronous bit rate adaptation is
often used in communication with terminal adapters and for connecting to
GSM networks from the ISDN.

The BRICK supports bit rate adaption according to the V.110 standard for
both incoming and outgoing calls. The type of bit rate adaption can be con-
figured separately for each dialup PPP partner in the biboPPPTable. This is
explained in Chapter 4, ISDN Connections on the BRICK.

ISDN Callback Support
The BRICK supports ISDN Callback in both directions. Also an important
security feature, callback can be configured on a per-partner basis to:

enabled Here, the BRICK accepts an initial call from a specified part-
ner. Upon succesful identification, the BRICK immediately
closes the connection and returns the call.

expected When callback is expected, the BRICK is the initiating party.
The BRICK calls the specified partner, closes the connec-
tion, and waits (expects) the partner to return the call.

Configuring callback is covered in Chapter 7, Configuring the BRICK as
an IP Router.
9

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

Intro
d

uc
tio
IP Features
SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

n

Los Geh
DHCP Server
The BRICK can be used as a DHCP (Dynamic Host Configuration Protocol)
Server to manage networking resources for a number of local or remote
DHCP clients. This is an efficient way of administering limited IP address
resources. The BRICK supports DNS and WINS Relay.

Clients such as Windows 95 and Windows NT hosts can be configured to
request networking resources from a DHCP server and to adjust their con-
figurations appropriately. Configuring the BRICK as a DHCP server is cov-
ered in Chapter 7, Configuring the BRICK as an IP Router.

DNS and WINS (NBNS) Negotiation over PPP
The BRICK supports DNS and WINS Negotiation over PPP as specified in
RFC 1877. This means that the BRICK is able to negotiate and configure its
primary and secondary domain name servers and its primary and second-
ary NetBios name servers at connection time with compliant hosts.

DNS/WINS Negotiation over PPP can be configured separately for each
PPP partner in the biboPPPTable; this is covered in Chapter 7, Configuring
the BRICK as an IP Router.

Dynamic IP Address Assignment
Dynamic IP address assignment in both client and server modes.

Client Mode In client mode the BRICK is configured to accept it’s
own IP address after establishing an IP connection.
This is useful for sites using low to mid-range BRICKs
to connect to Internet Service Providers.

Server Mode In server mode the BRICK assigns an available IP
addresses from a preconfigured IP address pool.
This is useful for any site using a BRICK product as
a remote access point to a central LAN.

Dynamic IP address assignment can be configured for each partner sep-
arately in the biboPPPtable. This is covered in Chapter 7, Configuring the
BRICK as an IP Router.
10

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Los Geh
Extended IP Routing
Most routers base IP routing decisions solely on an IP packet’s destination
address. With Extended IP Routing on the BRICK, routing decisions can be
made based on additional information contained in the data packet. This
gives you a much finer control over routing decisions and allows you to
make routing decisions based on the contents of the IP packet:

• Type of Service (TOS field in ethernet frame)
• Source IP Address
• TCP Source Port
• TCP Destination Port

Routing decisions can also be based on BRICK interfaces:

• Source Interface
• State of the Destination Interface

The main advantage of extended IP routing is that traffic can be selective-
ly routed over different transport mediums based on your site’s needs.
Some users require greater bandwidth for bulk data transmissions while
others need shorter bursts for interactive sessions. Extended IP routing al-
lows you to take advantage of different technologies (ISDN dialup, leased
lines, X.25, and/or X.31 links) based on your site’s specific needs.

Configuring Extended IP Routing is covered in Chapter 7, Configuring
the BRICK as an IP Router.

IP Session Accounting
As an advanced IP feature, IP Session Accounting lets you generate BRICK
accounting records for each TCP, UDP, or ICMP session routed over the
BRICK. Accounting records contain information such as protocol usage,
source and destination addresses, transfer activity, and the date, time, and
duration of the IP session. By default, accounting records are written to the
BRICK’s system logging table but can also be forwarded to remote log hosts
on the LAN for later processing. (See in Chapter 5).

Session accounting can be configured on a per-interface basis in the
ipSessionTable. This is covered in IP Session Accounting in Chapter 7.
11

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Los Geh
Network Address Translation
With Network Address Translation, or NAT, the BRICK is able to hide a
complete LAN behind a single IP address. This means that no matter how
many users are connected to the LAN, only one official IP address is re-
quired to connect the complete LAN to the Internet. This address can also
be a static address or dynamically assigned by an ISP at connection time.

NAT is accomplished by manipulating all incoming/outgoing IP packets
to reflect different source and destination addresses. The translation process
remains invisible to the connected networks. Hosts on the LAN continue to
use standard IP addresses, however they are no longer accessible from hosts
external to the LAN.

NAT is most useful where:

• Security is an issue. (controlling access to a limited number of hosts)
• The number of available IP addresses is limited.
• Monitoring of outgoing connections is desired.

NAT is an advanced IP feature. Configuring Network Address Transla-
tion is covered in Chapter 7.

Proxy ARP
Proxy ARP is supported on the BRICK for dial-in hosts that aren’t connected
directly to the LAN. With Proxy ARP the BRICK answers ARP requests for
such hosts. To the local hosts the dial-in host appears to be on the LAN seg-
ment. Note that ARP (Address Resolution Protocol) is a standard method
used to map IP addresses to physical MAC address.

Proxy ARP on the BRICK is straightforward; the respective interface is
enabled in the ipExtIfTable, the BRICK adjusts its routing tables automati-
cally. See Proxy ARP in Chapter 7 for more information on configuring
Proxy ARP.
12

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
Fe

a
ture

s
Intro

d
uc

tio
n

Los Geh
RIP Support
The Routing Information Protocol is commonly used in IP networks to
propagate routing information among routers. The BRICK supports version
1 and version 2 of RIP. Selected BRICK interfaces can be configured to inde-
pendently send (and/or receive) version 1, version 2, both, or no RIP pack-
ets.

See the Advanced IP Features section in Chapter 7 for information on
configuring RIP Options.

OSPF
The BRICK supports OSPF (Open Shortest Path First) and has been imple-
mented according to the Internet standsards defined in RFCs 1583 (OSPF
Version 2), 1793 (OSPF over Demand Circuits), and 1850 (OSPF Version 2
Management Information Base).

Special OSPF features such as MD5 authentification, importing of routing
information via external protocols, and propagation of system-wide default
routes is also supported.

For background info on the OSPF protocol refer to OSPF in Chapter 7.
Configuring OSPF on the BRICK is explained in detail in the section Rout-
ing with OSPF.
in
Security Features
Web based Monitoring
A HTTP server is included on the BRICK and provides SNMP community
password protected access to all system tables and variables via a TCP con-
nection (port 80 by default). This means that the BRICK can be monitored
via any WWW browser1.

A built-in status page provides a quick overview of current operating
state and hypertext links to all system information. A CGI program is also
included and allows you to monitor selected system variables. Simply point
a compatible web browser at the BRICK’s status page as follows.
13

Getting Startedt’s User’s Guide BRICKware Extended Feature

1.Browsers must support the HTML 2.0 standard and HTML tables (RFC 1942).

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Los Geh
http:// <BRICK’s System Name><: HTTP Port Number>

More information on web based access to the BRICK is covered in Chap-
ter 5, System Administration on the BRICK.

RADIUS support
RADIUS (Remote Authentication Dial In User Service), is an emerging cli-
ent - server security system (initially developed by Livingston Enterprises,
Inc.) to control access to network resources. The RADIUS server manages a
database of user authentication data.

The BRICK can be configured to operate as a RADIUS client that consults
the RADIUS server at connection time for specified dial-in partners. Partner
specific connection parameters can be centrally managed in this way. This
allows sites already using the RADIUS systems to centrally manage net-
work resources, to easily integrate the BRICK into their existing network
management system.

RADIUS support is configured using the biboAdmRadiusServer variable
and the biboPPPTable. This is covered in Chapter 7, Configuring the BRICK
as an IP Router.

IP Access Lists
IP Access Lists provide you with the ability to fine tune access restrictions
to and from connected IP networks. Access lists define the types of IP traffic
that the BRICK should accept or deny (i.e., packets are either routed or are
discarded). Access decisions are based on information contained in the IP
packet such as:

• Source and/or Destination IP Address
• Source IP port (port ranges are supported)
• Destination IP port (port ranges are supported)

Sites using the BRICK to connect a LAN to the Internet for example might
want to deny all incoming FTP requests, or outgoing telnet sessions from se-
lected LAN hosts. Access Lists provide a powerful tool in controlling access
to network resources. Refer to your User’s Guide for more information.
14

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Los Geh
Bridge Filtering
Bridge Filtering, sometimes called packet filtering, can be used to control
the type and amount of traffic that is bridged over local interfaces. This is an
important feature most useful when bridging over WAN links such as
ISDN.

Bridge filtering is relevant for sites requiring bridging where:

• Minimizing ISDN costs is a concern.
• Greater control of bridging traffic is desired.

See the section Bridge Filtering in Chapter 5, Configuring the BRICK as a
Bridge for detailed information.

ISDN Call Screening
The BRICK supports the call screening service provided by the ISDN and
uses this service as an additional security measure to check the authenticity
of incoming ISDN connections.

Call screening is mainly used in screening incoming PPP connections but
can also be used to ensure access to the BRICK’s isdnlogin service is secure.
Refer to Chapter 4, ISDN Connections on the BRICK, for information on us-
ing the ISDN screening mechanism.
15

Getting Startedt’s User’s Guide BRICKware Extended Feature

3

The SNMP shell

What’s Covered?

■ SNMP Explained

• Overview
• The MIB

■ SNMP Shell Overview
• The Shell Prompt
• Command Line Editing
• Object Types

Integer Values
Enumerated Types

• Shell Commands
• External Commands
BIANCA/BRICK Software Reference
■ BRICK System Tables
• Short vs. Long Names
• Creating Table Entries
• Deleting Table Entries
• Editing Table Entries

■ BRICK Interfaces
• Special Interfaces
• Hardware Interfaces
• Software Interfaces

■ BRICK Configuration Files
• Managing FLASH files
• Transferring Files with TFTP
• Transferring Files with XMODEM

via Serial Port
• Rebooting the System
Chapter Three
1THE SNMP SHELL
16

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

SNMP Explained

Overview
SNMP (Simple Network Management Protocol), the successor to SGMP (Simple Gate-
way Monitoring Protocol), is used to manage network devices (workstation, terminal
server, printer, bridge, hub). SNMP is an Application Layer protocol and uses the un-
derlying UDP (User Datagram Protocol) as its transport medium; SNMP defines the
rules of communication between an SNMP Manager and SNMP Agent allowing a net-
work administrator to “watch” and/or control individual devices by viewing/chang-
ing operational settings stored on the managed device.

SNMP-based network management is a Client-Server system; however, the terms
Manager and Agent are misleading in this context.

SNMP can be seen as a simple asynchronous request–response protocol. Messages
are passed via UDP (normally port 161) and are binary in format. The SNMP Manager
requests information from a specific device and an SNMP Agent (running on the de-
vice) authenticates the requester and responds with the requested information.

As mentioned above, different types of network devices may be managed via
SNMP. Inherently, such systems have very different types of operational settings (com-
paring say a router to a printer). SNMP is not concerned with the contents of the mes-
sages being sent but with the methods used to obtain and change the settings on the
remote devices. This is why SNMP is referred to as a simple protocol; because all net-
work management functions basically boil down to a few basic operations. Operations
available to the manager and agent processes are as follows.

Client
SNMP Manager

Server
SNMP Agent

HP OpenViewBRICK (snmpd)

(UDP port 161)
SNMP-Request

SNMP-Response
17

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Operations available to the SNMP Manager:
get-request Requests the value associated with a specific variable.
get-next-request Requests the next value associated with a variable that

comprises a list of elements.
set-request Sets or changes the value of a specific variable.

Operations available to the SNMP Agent:
get-response Returns the value of a variable associated with a

previous get-request or get-next-request message.
trap Reports the occurrence of a fault condition, or other

important relevant information.

The MIB
The MIB (Management Information Base) defines objects, often called MIB objects, that
can be managed (i.e., queried, changed, created) for a particular device via SNMP. Ob-
jects per se are simply templates that define characteristics about a particular device
and would include such things as:

•Object Names—How can the object be identified?
•Object Descriptions—How does the object’s assigned value re-

late to the overall operational state of the device?
•Object Access—Who is allowed to change the object’s setting?
•Object Types—Can the object’s value be changed?
•Object Ranges—What values can be assigned to the object?

Consider IP routing for a multiprotocol router such as the BRICK.
An IP route consists of several variables including at a minimum:
Destination IP Address, IP Netmask, IP Metric, and Router Inter-

face. Each of these items would be defined separately in the MIB. An example is an IP
route’s Next Hop object; though commonly referred to as ipNextHop its complete
name is: .iso.org.dod.internet.management.mib2.ip.iproutetable.ipNextHop.

And in numerical form: .1.3.6.1.2.1.4.21.1.7 (see MIB Structure).
Also, a router’s routing tables consist of multiple entries; thus multiple instances of

the same object type would exist on a running system. This is a fundamental concept
and means that the router needs a mechanism to uniquely identify a specific instance
of an object. The naming structure used by the MIB provides this mechanism by asso-

MIB
18

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

ciating a MIB object with a local number and is called Instance Identification. When
managing an IP router via SNMP it is instances of objects that are being manipulated.

SNMP Managers

Intelligent SNMP managers can communicate effectively with devices when the struc-
ture of MIB objects are known to it. ASCII files containing descriptions of MIB objects
supported by a device are normally provided by the device’s manufacturer and can be
imported (or compiled) into SNMP manager applications.

MIB Structure

MIB objects have a hierarchical naming structure that forces every object to be unique
to all other objects. This hierarchy is similar to a tree structure and is managed by the
IANA (Internet Assigned Numbers Authority). Each node in the tree relates to a doc-
ument that defines objects below that point. In SNMP individual object names are
called Object Identifiers, or OIDs.

The figure on the following page shows the tree hierarchy relating to MIB objects im-
plemented on the BIANCA/BRICK.

Note that OIDs can be referenced in two ways.

• Numerically
Using the numbers assigned by the documents in the tree shown here
a router’s IP routing table is defined as object #21 of the ip module
in the document that describes mib2.

.1.3.6.1.2.1.4.21

• Textually
Text names can also be used to identify objects. The router’s IP route
table would have the symbolic OID of:

.iso.org.dod.internet.management.ip.iproutetable

Objects under the .iso.org.dod.internet.management tree are standard MIB objects
defined by the ISO; enterprises (companies such as router manufacturers and protocol
developers) may be assigned subtrees by IANA where their product specific objects
can be defined. Since like devices provide similar services, and to provide interopera-
bility between existing SNMP managers most devices support standard MIB objects
defined by the ISO (International Organization for Standardization).
19

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

For internet routers MIB-2 (defined in RFC 1158) is the current standard and defines
such objects as IP routing tables and various IP protocol settings. Multiprotocol routers
that support IPX will also support Novell’s enterprise MIB definitions.
20

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

system
inter-

udptcptcpip
addr.

snmp frelay
faces trans

1
2 3

4 6 7 11 14

4

novell

23

mibdoc

2

circuit

2

ripsap

20

traps
for-

circuitsystem

3
21 5

services

4
warding

system

1

private

4

mgmt.

2

iso.org.dod.

1.3.6.

icmp

5

ospf

17

mib2

1

internet.

1

enter-

prises

1

ipx

5

capi

x25biboip

isdnadmin

21

5 6

7

bridge

dialmap

4

8

bintec

272

ppp

3

ipx

9

bibo

4
bintecsec

254
Los Geht
21

Getting Started’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

SNMP Shell Overview
Along with other routing processes, the BRICK starts an SNMP Agent (see SNMP Ex-
plained) process when at boot time. You’ll see these processes listed to the screen when
the system is started (if a console is attached via the serial port). After all processes
have been started, a login prompt is presented to the screen.

This login session is what we call the SNMP-shell.
The SNMP shell serves the same purpose as an SNMP Manager application. All of

the BRICK’s MIB objects can be managed from this shell. And because the shell is char-
acter based, the BRICK can be accessed remotely over any character-oriented connec-
tions such as:

• telnet sessions (from PCs or Workstations)
• HyperTerminal sessions (Windows 95 /Windows NT)
• isdnlogin sessions (isdnlogin command is provided)
• X.25 pad calls (minipad utility is provided)

The Shell Prompt
As shown below the shell prompt consists of two parts separated by a colon.

If the contents of the sysName object (system table) is not set, the first part of the
prompt defaults to "brick".

Also, as you navigate among MIB objects the prompt will change to reflect the last
system table displayed; similar to the "current working directory" variable used with
many UNIX shells.

Knowing the current system table can be very useful when editing MIB objects be-
cause it allows you to use an object’s short name instead of the complete object name;
this is covered in the section Short vs. Long Names.

Command Line Editing
A command line editor is available from the SNMP shell. The command line editor al-
lows you to edit commands on the command line before pressing the <Return> key let-

mybrick:ipRouteTable>

Current SysName Current system table.
22

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

ting you adjust parameter settings or typing mistakes of previously entered com-
mands. The up, down, right, and left arrow keys can be used as follows.

The command line editor is always in insert mode. Once the cursor is moved along
the command line new characters typed in are inserted at the cursor’s location. The
<backspace> key can be used to erase characters.

Object Types
Each MIB object has a type associated with it that defines the types of values that it can
be assigned. An object’s type can be any of the following.

• Integer Value • Object Identifier
• Character String • Octet String
• IP Address • Enumerated Value

For some objects the type of value that it may be assigned will be clear from the ob-
ject’s name. The Address variable in the biboPPPIpAssignTable is a good example, it
accepts an IP address in dot format. You can determine an object’s type from the SNMP
shell by entering the object’s name followed by a ? (no space in between) and pressing
<Return>. For example;

Objects that accept "integer values" can be set using one of four numbering systems
as descibed below. Note however that some objects only accept numerical values in a

Key Meaning

Command History
Moves you backwards through the list of commands
entered during this shell session.

Command History
Moves you forwards through the list of commands
entered during this shell session.

Command Editing
Moves the cursor backwards through the currently dis-
played command.

Command Editing
Moves the cursor forwards through the currently displayed
command.
23

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

specific numbering system such as "binary integers" as shown in the last example
above.

Integer Values

When setting MIB objects that accept integer values the four numbering systems
shown below may be used.

In most cases the decimal system is used; when using other numbering systems the
above prefixes must be used to identify the appropriate numbering system.

Enumerated Types

Many MIB objects only accept values from a predefined list. These objects are said to
be enumerated types. For example the Compression object in the biboPPPTable can be
set to none , v42bis , or stac . No other values are acceptable.

mybrick::system> ipRouteDest?
ipRouteDest: (readwrite) IP-address in dot-format (eg. 1.2.3.4)

mybrick::ipRouteTable> ipRouteInfo?
ipRouteInfo: (readwrite) object identifier in dot format (eg. .1.3.6.1)

mybrick::ipRouteTable> ipRouteType?
ipRouteType: (readwrite) other (1), delete (2), invalid (2), direct (3), indirect

mybrick:ipRouteTable> biboDialStkMask?
biboDialStkMask: (readwrite) binary integer (e.g. 0b1101)

Numbering
System

Prefix Example
Command

Resulting
Decimal

Value

Decimal <none> ipDefaultTTL=10

10
Octal 0 ipDefaultTTL=012

Hexadeximal 0x ipDefaultTTL=0xa

Binary 0b ipDefaultTTL=0b1010
24

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The values for these objects are numbered starting at one with the first value being
the objects default value. These numbers can also be used to set an object to the respec-
tive enumerated value. This means that the commands Compression=v42bis has
the same effect as Compression=2

Shell Commands
The following commands are available from the SNMP shell.

Command Usage Meaning

Help ? Lists all shell and external commands.

Community c [<community>] Sets/displays current SNMP community.

Group g [<groupnumber> |
<groupname> | *]

Lists all groups or all tables within a
group.

List l Lists all tables.

Priority p [<high | low>] Sets/displays current shell priority set-
ting.

Columns u [<columns>] Sets/displays the number of columns
used when displaying table output to
screen.

Raw-Mode x Toggles shell’s raw mode on and off.

Table-Mode y Toggles shell’s table mode on and off.

Lines z [<lines>] Sets/displays the number of lines used
when displaying table output to screen.

Exit exit Exits the current SNMP shell.
25

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The help command (?)

Usage: ?

The help command simply lists a summary of all available internal and external shell
commands to the screen.

The Community Command (c)

Usage: c [<communityname>]

The community command sets or displays the current SNMP community name to use
for SNMP command requests issued from the current shell.

Community names correspond to the password strings configured for the biboAd-
mAdminCommunity, biboAdmReadCommunity, and biboAdmWriteCommunity ob-
jects of bintecsec.

For example, if:

1. The current value of biboAdmAdminCommunity = bianca AND
2. You are currently logged in as the admin user, AND
3. The community hasn’t changed since logging in.

then your current community name (as displayed using c) is bianca .

Changing the community name during an SNMP shell session effectively changes
read/write permission for MIB objects. This is similar to the UNIX su command except
that no subshell is started.

If you log in as the admin user and change the value of biboAdmAdminCommunity,
the current community is automatically adjusted to the new value (with one exception
as noted below).

NOTE If you manually changed the community name any
time during a shell session, the BRICK will no longer be
able to automatically update the community name
upon changes to biboAdmAdminCommunity.

You will have to change the community name man-
ually or log out and log in again using the new value.
26

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The Group Command (g)

Usage: g [<groupnumber> | <groupname> |*]

The group command lists BRICK subsystem groups, or all tables within a specific
group to the screen. Options are used as follows:

<groupnumber> Specifies a group whose tables should be listed.

<groupname> Specifies a group whose tables should be listed.
Possible group names are those listed using the g
command without parameters.

* Lists all tables without showing which group they
belong to.

The List Command (l)

Usage: l

The list command lists all system tables to the screen. Table names are displayed in nu-
merical order grouped by BRICK subsystem. A table’s contents may be listed by enter-
ing the table name, or its number; i.e., entering system displays the same results as en-
tering 1.

NOTE The shell interprets integer values according to the for-
mat they are entered in. See Integer Values.

If you enter the command g 08 , the shell interprets
the leading 0 as identifying an octal and will report that
the group doesn’t exist. The command g 010 would
display tables in group eight; as would g 0b1000 ,
g 0xb , and g 8 .
27

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The Priority Command (p)

Usage: p [high | low]

The p (priority) command sets the priority (high or low) of the BRICK’s SNMP shell
with respect to other system processes.

The specified priority becomes effective for the current shell and all sub-processes
started from this shell. When the p command is used without arguments the current
shell priority is displayed.

By default, the SNMP shell has a lower priority than routing processes which means
that an interactive configuration session (setup) will not affect performance on systems
with many WAN partners.

Shell-priority and cmd=save commands:
If the shell’s priority is set to high and a configuration is saved, the SNMP shell im-

mediately returns you to the command prompt. This is in contrast to low status where
the prompt is returned only after the save command is completed. The state of a
cmd=save command can be verified by displaying the biboAdmConfigTable.

Note: This does not apply to SetupTool sessions.
SetupTool always waits for configuration management
commands to complete before proceeding.

Management Routing Configuration other

Pr
io

rit
y

SNMP
Mgr.

routing

save

copy

move

load
p high

p low

isdnlogind

telnetd

minipad

httpd

SNMP
Shell

lcdd
28

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The Columns Command (u)

Usage: u [<columns>]

The columns command displays or sets the number of columns to use when writing to
the screen; by default 79 columns. This is useful in Table Mode when using a non-
standard sized terminal window (i.e., bigger than 80x24).

When using Setup Tool, the number of columns doesn’t matter, since Setup Tool al-
ways displays output for a 79 column terminal window.

The Lines Command (z)

Usage: z [<lines>]

The lines command displays or sets the number of lines to use when writing to the
screen; by default 24 lines. This is useful in Table-Mode when using a non standard
sized terminal window (i.e., bigger than 80x24).

When in Table-Mode, the shell displays as many "complete" table entries as possible
(<lines required> ≤ z <lines>) before prompting the user to continue with "Press <RE-
TURN> to continue or <q> to quit. "

The Exit Command (exit)

Usage: exit

The exit command ends the current SNMP shell session and returns you to a new login
prompt. Another way to exit the current shell is to enter Control-d, (holding down the
Ctrl key and entering d).
29

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The Raw-Mode Command (x)

Usage: x

The Raw-Mode command toggles Raw-Mode on and off. After entering the command,
the shell reports which mode it is entering. By default Raw-Mode is off from the SNMP
shell.

Raw-Mode means that MIB objects are dumped to the screen in the following for-
mat:

<MIB OID>. <DB Key>. <Dynamic Number> (<Type>) <Value>

MIB OID The MIB Object’s OID in numerical format.
DB Key The DB Key identifies a specific instance of MIB OID

and consists of the numerical values of all index
variables for the system table.

Dynamic Number A local number that the BRICK assigns locally.
Type The MIB Object’s type; integer, string, IP address, etc.
Value The current value of this instance of MIB OID.

When Raw-Mode is on the current columns, lines, and Table-Mode settings are dis-
regarded. Although the command prompt is not present when Raw-Mode is on, the
command-line editor (cursor and backspace keys) can still be used. MIB objects can be
set or queried using their numerical or symbolic names. Although this mode is not in-
tended for interactive use it is possible to selectively display and set system variables.
The difference between Raw-Mode on and off is shown below.

Raw-Mode on:

mybrick:system> x
rawmode on
ipNetToMediaTable
.1.3.6.1.2.1.4.22.1.1.1000.192.168.6.7.0 (Integer) 1000
.1.3.6.1.2.1.4.22.1.2.1000.192.168.6.7.0 (PhysAddress) 0:a0:f9:0:3:f2
.1.3.6.1.2.1.4.22.1.3.1000.192.168.6.7.0 (IpAdress) 192.168.6.7
.1.3.6.1.2.1.4.22.1.4.1000.192.168.6.7.0 (Integer) 4
.1.3.6.1.2.1.4.22.1.1.1000.192.54.54.2.1 (Integer) 1000
.1.3.6.1.2.1.4.22.1.2.1000.192.54.54.2.1 (PhysAddress) 0:0:f1:ab:f2:f3
.1.3.6.1.2.1.4.22.1.3.1000.192.54.54.2.1 (IpAdress) 192.54.54.2
.1.3.6.1.2.1.4.22.1.4.1000.192.54.54.2.1 (Integer) 4
30

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Raw-Mode Off (default):

x
rawmode off
mybrick:system> ipNetToMediaTable

inx IfIndex(*rw) PhysAddress(rw) NetAddress(*rw) Type(-rw)

 00 1000 0:a0:f9:0:3:f2 192.168.6.7 static

 01 1000 0:0:f1:ab:f2:f3 192.54.54.2 static

mybrick:ipNetToMediaTable>
31

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The Table-Mode Command (y)

Usage: y

The Table-Mode command toggles Table-Mode on and off. After entering the com-
mand the shell reports which mode it is now entering. By default Table-Mode is on.

When Table-Mode is on the shell formats output using the current lines, and col-
umns settings. Thus when a table’s contents are displayed as many "complete" table
entries are displayed as possible. The table’s column names are displayed followed by
the rows with each row separated by a blank line. If the table consists of more entries
than can be displayed to the window (see the lines command), the user is prompted to
continue.

Table-Mode On (default):

zeusbox:system> ipRouteTable

inx Dest(*rw) IfIndex(rw) Metric1(rw) Metric2(rw)
Metric3(rw) Metric4(rw) NextHop(rw) Type(-rw)
Proto(ro) Age(rw) Mask(rw) Metric5(rw)
Info(ro)

 00 192.168.12.0 1000 0 -1
-1 -1 192.168.12.20 direct
netmgmt 28674 255.255.255.128 -1
.0.0

 01 192.168.6.0 1000 0 -1
-1 -1 0.0.0.0 indirect
netmgmt 28674 255.255.255.0 -1
.0.0

 02 16.0.0.30 10001 0 -1
-1 -1 16.0.0.30 direct
netmgmt 28675 255.255.255.0 -1
.0.0

Press <RETURN> to continue or <q> to quit.
32

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Table-Mode Off:

15: ipRouteMetric2.192.168.4.128.15(rw): -1
15: ipRouteMetric3.192.168.4.128.15(rw): -1
15: ipRouteMetric4.192.168.4.128.15(rw): : -1
15: ipRouteNextHop 192.168.4.128.15(rw): 192.168.4.128
15: ipRouteType.192.168.4.128.15(-rw): indirect
15: ipRouteProto.192.168.4.128.15(ro): rip
15: ipRouteAge.192.168.4.128.15(rw): 4
15: ipRouteMask.192.168.4.128.15(rw): : 255.255.255.128
15: ipRouteMetric5.192.168.4.128.15(rw) : -1
15: ipRouteInfo.192.168.4.128.15(ro): .:0.0
16: ipRouteDest.16.0.0.15.16(rw): 16.0.0.15
16: ipRouteIfIndex.16.0.0.15.16(rw): 1000
16: ipRouteMetric1.16.0.0.15.16(rw): 2
16: ipRouteMetric2.16.0.0.15.16(rw): -1
16: ipRouteMetric3.16.0.0.15.16(rw): -1
16: ipRouteMetric4.16.0.0.15.16(rw): -1
16: ipRouteNextHop.16.0.0.15.16(rw): 16.0.0.15
16: ipRouteType.16.0.0.15.16(-rw): indirect
16: ipRouteProto.16.0.0.15.16(ro): rip
16: ipRouteAge.16.0.0.15.16(rw): 5
16: ipRouteMask.16.0.0.15.16(rw): 255.255.255.0
16: ipRouteMetric5.16.0.0.15.16(rw): -1
16: ipRouteInfo.16.0.0.15.16(ro): .0.0
zeusbox:ipRouteTable>
33

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

External Commands
As listed by the help (?) command the following external commands are also available
from the SNMP shell.

• ping • telnet • traceroute
• ipxping • minipad • isdnlogin
• setup • update • halt
• ifstat • netstat • ifconfig
• debug • date • modem
• ospfmon

The ping Command

Usage: ping < host> [<size>]

The ping program can be used to test communication with another host. Ping sends
ICMP echo_request packets of length size to host. Host is a required parameter which
takes an IP address or a hostname. Size is optional and sets the length (in bytes) of the
packets to use.

The ping command operates in continuous mode and keeps sending packets until
the program is stopped by entering Control-C; that is, holding down the "Ctrl" key
("Strg" key on German keyboards) and pressing "C".

The telnet Command

Usage: telnet <host> [<port>]

The telnet program can be used to establish a terminal session with the host specified
by the host parameter. The host’s numerical IP address or hostname can be used. The
optional port parameter specifies which TCP port to connect to on the host.

The traceroute Command

Usage: traceroute [-m <maxhops>] [-p <port>] [-q <nqueries>]
[-w <waittime>] <address> [<packetsize>]
34

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

By using the Internet Protocol’s "Time-To-Live" field, the traceroute program prints the
route packets take to arrive at a network host. The only mandatory parameter is the
destination address which may be the host’s name or numerical IP address. Options are
used as follows:

-m <maxhops> The maximum number of hops probe packets may
travel before reaching host (i.e., the value of each
packet’s TTL, Time-To-Live field).

-p <port> The UDP port to use. By default port 33333 is used.
Traceroute requires that host is not using ports
between port and (port + maxhops-1). If needed this
option should be used to select an unused port range.

-q <nqueries> The number of queries to send, default is 3.
-w <waittime> Seconds to wait for a response to a probe packet.
<address> IP address (or hostname) of destination host.
<packetsize> The size (in bytes) to use for each probe packet.

The ipxping Command

Usage: ipxping [-c <count>] [-d <delay>] [-s] <net> [<node>]

The ipxping command can be used to test communication between the BRICK and an
IPX server and is comparable to IP’s ping command. ipxping has one required argu-
ment, net which specifies the server’s (or BRICK’s) IPX Network Number. The optional
arguments are used as follows:

-c <count> Send exactly <count> packets. By default one
packet is sent (that is, if both -c and -s are not used).

-d <delay> The time (in seconds) to wait between packets.
By default, 1 one second delay is used.

-s Send 10000 packets.
<node> Optional IPX node number. Should be used if the IPX

host’s Internal Network Number is not = 0:0:0:0:0:1.

Note: Even if the BRICK’s IPX network configuration is correct,
the IPX server may not answer ipxping requests if it
hasn’t loaded its IPXRTR.NLM. It may be helpful to verify
that the module is loaded if problems occur.
35

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The minipad Command

Usage: minipad [-7] [-p <pktsz>] [-w <winsz>] [-c <cug>]
[-o <outgocug>] [-b <bcug>] <x25address>

The minipad program is a basic PAD (Packet Assembler/Disassembler) program that
can be used to provide remote login services for remote X.25 hosts. Minipad is also use-
ful for testing X.25 routes. To disable incoming X.25 connections to minipad, set
x25LocalPadCall to dont_accept .

Minipad has one mandatory argument, x25address, which can be a standard X.121
address, when preceded by an "@", or an extended X.25 address. Data calls to closed
user groups defined in the x25RouteTable and x25RewriteTable can be placed using
the -c , -o , and -b options.

-7 Use 7-bit data bytes.
-p <pktsz> The packet size to use.
-w <winsz> The window size to use.
-c <cug> Open connection with closed usergroup cug.
-o <outgocug> Open connection with outgoing closed user

group outgocug.
-b <bcug> Open connection with bilateral closed

user group bcug.
<x25address> The remote host’s X.25 address.

The isdnlogin Command

Usage: isdnlogin [-c <stknumber>] [-C] [-s <service>] [-a <addinfo>]
[-b <bits>] <ISDN-number> <ISDN-servicename>

The isdnlogin program enables you to start a remote login shell on the BRICK over IS-
DN. Using the ISDN-number and ISDN-servicename parameters, you select the ISDN
partner to login to, and the ISDN service to use. Valid ISDN servicenames are shown
below.

Through D-channel signalling, isdnlogin can also accept incoming calls from analog
modem with V.110 bitrate adaption. Connections to V.110 stations can also be estab-
lished with isdnlogin when the appropriate layer 1 protocol is supplied on the com-
mand line.
36

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

-c <stknumber> The ISDN stack number to use.
-C Attempt to use V42bis compression.
-s <service> The 1TR6 service code to use for outgoing calls.
-a <addinfo> The 1TR6 additional info code for outgoing calls.
-b <bits> Use <bits>-bit data for transmission.
<ISDN-number> The remote host’s telephone number.
<ISDN-servicename> The service names shown below are supported:

data telephony faxg3 faxg4
t_online datex_j btx modem
56k trans dovb
v110_1200 v110_2400 v110_4800 v110_9600
v110_14400 v110_19200 v110_38400

The setup Command

Usage: setup

The setup command is used from the SNMP shell to start the Setup Tool program. Set-
up Tool provides a menu oriented interface to configuring the BRICK, its major fea-
tures, and administering/monitoring its operational state. The User’s Guide is com-
pletely Setup Tool based; please refer to it for information on using the Setup Tool
program.

The update Command

Usage: update <ipaddress> <filename>

The update command can be used to upgrade the BRICK’s internal system software
using TFTP. The host at ipaddress can be a UNIX system or a PC as long as it’s been con-
figured as a TFTP server. For PCs, DIME Tools includes a TFTP Server application. For
UNIX systems see the section Setting up a TFTP Server in Chapter 5. The filename spec-
ifies the image to load into flash ROM. This image must be present in the TFTP-root
directory configured on the server.
37

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The halt Command

Usage: halt

The halt command halts the system and reboots using the default boot configuration
file. The halt command has the same effect as powering the system off and on; i.e. it
immediately shuts down the BRICK. Therefore we recommend to better use cmd=re-
boot , because this way first running processes are completed, before the system is shut
down (see Rebooting the System).

The ifstat Command

Usage: ifstat [-l] [-u] [<ifcname>]

The ifstat command displays status information for each of the system’s interfaces,
based on the contents of the ifTable.

-l Displays the full length of the interface descriptions
(normally the description is limited to 12 characters).

-u Only display information for interfaces in the up state.
‹ifcname› Only display information for interfaces whose description

starts with the given characters (e.g. ifstat en1 displays
information on the interfaces en1, en1-llc, and en1-snap).

Status information for the desired interfaces is displayed in eleven columns as
shown below.

Column
Meaning

ifTable Object

Index The BRICK’s interface number. Numbers > 10000 indicate soft-
ware (or virtual) interfaces.ifIndex

Descr
The interface’s description as assigned to ifDescr.

ifDescr
38

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Ty Interface type. Integer values correspond to the enumerated
types of the ifType object. 6=ethernet_csmacd ,
7=iso88023_csmacd , 23=ppp , 32=frame_relay .ifType

Mtu Maximum Transmission Unit for this interface; i.e., the largest net-
work datagram that can be sent over this interface.ifMtu

Speed The interface’s estimated bandwidth in bits per second.
For interfaces whose bandwidth doesn’t change nominal
bandwidth is reported.ifSpeed

St The current operational status of the interface. May be:
up (up), dn (down), ts (testing), do (dormant),or bl (blocked).ifOperStatus

Ipkts
The number of packets received via this interface (the sum of
ifInNUcastPkts and ifInUcastPkts objects) since sysUpTime.ifInNUcastPkts

ifInUcastPkts

Ies The number of incoming packets that couldn’t be delivered
due to errors (the sum of ifInDiscards and ifInErrors objects)
since sysUpTime.

ifInDiscards
ifInErrors

Opkts
The number of packets requested via this interface (the sum of
ifOutNUcastPkts and ifOutUcastPkts objects) since sysUpTime.ifOutNUcastPkts

ifOutUcastPkts

Oes The number of outgoing packets that couldn’t be sent due to
errors (the sum of ifOutDiscards and ifOutErrors objects) since
sysUpTime.

ifOutErrors
ifOutDiscards

PhysAddress For hardware interfaces this is the physical (MAC) address. Soft-
ware interfaces always display "point-to-point".ifPhysAddress

Column
Meaning

ifTable Object
39

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The netstat Command

Usage: netstat [-i] [-r] [-p]

The netstat command can be used to display a quick system status. Depending on
which option is used, statistical information is retrieved from the biboDialTable, ipx-
CircTable, and ipRouteTable. The three options are as follows:

-i Display status information for each interface. Output is
displayed in 10 columns similar to the ifstat command. See the
description of ifstat for information on each column.

-p Display information for each configured ISDN partner.
Output is displayed in seven columns as follows:

-r Displays the current routing table entries.
Output is displayed in seven columns as follows:

Column Meaning

Index Interface number taken from biboPPPIfIndex.

Partnername The software interface’s name as set in IfDescr.

Protocol The protocol configured for this interface as set in
biboPPPEncapsulation.

State The current operational status as set in ifOperStatus.

Destination Associates IP address with this partner. The dis-
played address’ type is specified in the Type field.

Type Type of address specified in the Destination field,
may be: LOC (local), HOS (host), DEF (default), or
NET (network).

Telno Lists telephone numbers configured for the partner
(biboDialNumber). A number’s direction (biboDial-
Direction) is indicated by a greater-than sign (>) for
outgoing, a less-than sign (<) for incoming, or both
(< >) for both in and outgoing.
40

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The ifconfig Command

Usage: ifconfig <interface> [destination <destaddr>] [<address>]
[netmask <mask>] [up|down|dialup] [-] [metric <n>]

The ifconfig command can be used to assign an address to a network interface and/or
to configure network interface parameters and change the respective routing table en-
tries.

When only the required interface parameter is used, ifconfig displays the current
settings for the interface.

Options (and their respective ipRouteTable entries) are used as follows:

<interface> Interface name (ifDescr)
destination <destaddr> Destination IP address of a host for adding

host routes. (ipRouteDest, ipRouteMask)
<address> BRICK’s IP Address for this interface.

(ipRouteNextHop)
netmask <mask> Netmask of interface (ipRouteMask)
– Don’t define own IP address

(i.e. ipRouteNextHop = 0.0.0.0)
metric <n> Sets route metric to n (ipRouteMetric1)

Column Meaning

Typ Type of address specified in the Destination field,
may be: LOC (local), HOS (host), DEF (default), or
NET (network).

Destination The destination IP address for this route as set in the
ipRouteDest object.

Netmask The netmask for this route as set in ipRouteMask.

Gateway The IP address as set in ipRouteNextHop.

Met. The current operational status as set in ifOperStatus.

Interface The interface’s name as set in ifDescr

Proto Identifies how this route was learned as stored in
ipRouteProto (local =manually configured routes).
41

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The debug Command

Usage: debug [-t] [show | all | [<subs> [<subs> ...]]]

The debug command can be used to selectively display debugging information origi-
nating from one or more of the various subsystems. Command line parameters are
used as follows:

-t Print a timestamp before each debugging message.
show Show all possible subsystems that can be debugged.

ACCT ISDN INET X.25 IPX CAPI PPP BRIDGE CONFIG SNMP
X.21 TOKEN ETHER RADIUS TAPI OSPF FR MODEM RIP

all Display debugging information for all subsystems.
<subs> One or more subsystems separated by whitespace can

be entered to display only debugging information from
these subsystems. Current BRICK subsystems include:

The date Command

Usage: date [-i] [YYMMDDHHMMSS]

The date command is used to set or display the current time. All BRICK products have
a software clock which stores the current time as retrieved from the host at biboAdm-
TimeServer. The optional date-string sets the current date to the specified Year, Month,
Day, Hour, Minute, and Second.

Note that the BRICK-XM and BRICK-XL also have a real-time clock (hardware).The
-i option displays the date stored in the software clock and is therefore only available
on the XM and XL

Product
Date Command:

date date <YYMMDDHHMMSS>

V!CAS Displays date cur-
rently stored in the
software clock

Sets the software clock to
<YYMMDDHHMMSS>BRICK-XS

BRICK-XM Displays date cur-
rently stored in the
hardware clock

Sets the hardware AND soft-
ware clocks to

<YYMMDDHHMMSS>BRICK-XL
42

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The modem Command

Usage: modem [update <TFTP host> <TFTP filename> | status]

The modem command is used to update the system software of your CM-2XBRI
module and FM-8MOD modem connector module, or to display the current operating
status of all modems. Note that the FM-8MOD module is only available on the BRICK-
XL. The command can be used as follows.

If the keyword update is used the following parameters are required.

<TFTP host> The IP address of your TFTP server; i.e. the host
where the modem software image can be retrieved.

<TFTP file> The file name of the modem software image.

If you supplied the correct TFTP host and file name you will see some screen output
concerning the loading and verifying of the image file. The update application will au-
tomatically detect all your modem connector modules and you will be queried to up-
date each one individually.

If you reply with y the update will be performed. This will take approximately 60
seconds. After the modem update is complete you should reboot your BRICK imme-
diately if you want to use the new modem software.

When the status keyword is used, the system displays the current status for each
modem similar to the following.

No State OBytes IBytes LastMessage
00 IDLE 280 2704 CONNECT 115200/K56/LAPM/NONE/38000:TX/31200:RX
01 IDLE 278 2701 CONNECT 115200/V34/LAPM/V42BIS/33600:TX/33600:RX
02 IDLE 18481 22233 CONNECT 115200/K56/LAPM/NONE/40000:TX/31200:RX
03 CALLING 0 0
04 CONNECTED59635 64330 CONNECT 115200/V34/LAPM/NONE/33600:TX/33600:RX
05 CONNECTED407 79 CONNECT 115200/K56/LAPM/V42BIS/36000:TX/31200:RX
06 CALLED 0 0
07 IDLE 0 0

Note To update the modem software image, a TFTP server
(where your BRICK can retrieve the software image)
must be configured (see Setting up a TFTP Server in
Chapter 5 for additional information).
43

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The ospfmon Command

Usage: ospfmon db [rtr |net |sum|asbr |ext |stat] <options>

The ospfmon application can be used from the SNMP shell to display the contents
of the BRICK’s OSPF Link State Database. Note that only LSA header information is
stored in the MIB system tables, this application can be used to dump the complete
contents of the database. The various parameters can be used to selectively display
specific types of database entries.

Only one of the six identiers can be used at time to display a cross section of the da-
tabase.

rtr Show all Router links.
net Show all Network links.
sum Show all Summary links.
asbr Show all AS Border Router links.
ext Show all External Links.
stat Show OSPF database statistics.

Additional options may also be used to further identify more specific types of en-
tries and include.

area <id> Show database entries for area <id>.
rtrid <id> Show entries generated by router ID <id>.
lsid <id> Show database entry with link state ID <id>.

Example:

Router Links from the Link State Database for Area 0.0.0.0 (from BRICK-XL in this
diagram) might look like this.

BRICK-XL:> ospfmon db rtr area 11.0.0.0
Area 11.0.0.0

Router Link Age 920 Options 0x20 LsId 192.168.30.1
RtrId 192.168.30.1Seq 0x80000002 Checksum 0xe72a Len 48

options 0x2 links 2
Stub Network id 12.0.0.2 data 255.255.255.255 metric 1562
Stub Network id 12.0.0.3 data 255.255.255.255 metric 0
44

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Note that the Link State ID (Lsid) of the database entry has different meanings based
on the type of Link State Advertisement that is displayed. The table below shows the
meanings for the five LSA types.

BRICK System Tables
When booting the BRICK loads its configuration file into memory. Normally the con-
figuration file (named "boot") is loaded from flash memory. (A configuration file can
also be loaded from a remote TFTP host at any time during operation.)

The BRICK’s configuration file consists of system tables and variables whose format
and structure are defined in The MIB. Upon loading this information is stored in mem-
ory (RAM) and can be seen as a sort of relational database whose current contents can
be manipulated from the SNMP shell. Each table in the database consists of rows and
columns where:

• Column headings represent individual MIB object type.
• Rows consist of instances of several MIB objects.

There are static tables only containing just one row (e.g. system). Tables with multi-
ple rows are numbered (inx) starting from 00., Thus each table entry, or row, refers to

LSA Type: Meaning of Link State ID:

Router Link The Router ID of the router that gener-
ated the LSA.

Network Link The IP Address of the DR on the desti-
nation network

Summary Link The ipRouteDest of the propagated IP
route.

ASBR
Summary Link

The Router ID of the Autonomous Sys-
tem Border Router.

External Link The ipRouteDest of the propagated IP
route.
45

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

an instance of several MIB objects, or variables. The ipNetToMediaTable (the current
ARP cache) is shown below.

The characters (in parentheses) following each column name have special meanings
for creating and deleting table entries. The inx number identifies a specific row and can
be used when editing table entries.

Short vs. Long Names
When Creating, Deleting, or Editing BRICK system table entries, MIB variables are
normally identified from the command line using their complete (or Long Name)
name as defined in The MIB. Long Names for the MIB objects defined in the ipNetTo-
MediaTable are:

ipNetToMediaIfIndex
ipNetToMediaPhysAddress
ipNetToMediaNetAddress
ipNetToMediaType

Note that objects contained in the system table currently displayed in The Shell
Prompt are also accessible via their Short Names. This allows the shell prompt to op-

* Identifies index objects. Index objects define a unique database
key that is required when creating new table entries.

– Identifies the variable that contains the delete flag.
These variables are used to delete a table entry.

ro Identifies a variable as being Read-Only.
These variables contain values that may not be changed.

rw Identifies a variable as being Read-Write.
Values for these variables can be changed.

ipNetToMediaTable
inx

1000 8:0:24:af:b2:3 192.168.6.140 static00

IfIndex (*rw) PhysAddress (rw) NetAddress (*rw) Type (–rw)

1000 0:a0:f9:c7:4:4 192.168.6.12 static01

2000 0:8:2:4b:4e:24 192.168.6.5 dynamic02

2000 0:af:92:5a:1:2 192.168.6.37 dynamic03
46

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

erate as a sort of Current Working Directory. Before changing (or creating) table entries
from the SNMP shell, you’ll probably want to display the table’s contents first. As the
table’s contents are written to the screen the table’s short names are displayed. The
short names for MIB objects contained in the ipNetToMediaTable (shown on the previ-
ous page) are:

IfIndex
PhysAddress
NetAddress
Type

Creating Table Entries
Creating table entries is comparable to adding a new entry into the database that’s cur-
rently stored in memory.1 Since variables in the database are individual instances of
MIB objects each variable must be identified by a unique key. Each table row contains
a unique database key which consists of the values of all the index objects for that row.
And because a table row can only contain one instance for each MIB object, the key
identifies the instances of all variables for the row.

Note: MIB objects are NOT case sensitive. Upper and lower
case characters have been used above for added
readability. System table entries can be manipulated
using any combination of upper/lower case characters
with either long or short names as explained above.

1.The reference to "memory" is here because changes to a table’s contents are only saved to a write-

able medium (flash ROM or a remote system’s disk) upon explicit instruction.
47

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

In the ipNetToMediaTable shown above, the IfIndex and the NetAddress objects are
index variables. The four instances of the PhysAddress object can be uniquely identi-
fied in the database their respective keys as follows:

For index objects that are Enumerated Types the numeric value is always used. If the
IfIndex object consisted of the values ethernet (1) , token_ring (2) , or other
(3) the respective keys shown above might be: 1.192.168.6.140, 1.192.168.6.12,
2.192.168.6.5, and 2.192.168.6.37.

This complicated explanation simply means that in order to create a new table entry,
a new database key has to be defined which involves setting all index variables within
one command. Additional variables may also be set at the same time. Variables not de-
fined when a row is created are assigned default values that may be changed later (see
Editing Table Entries).

A new static ARP mapping entry (comparable to: arp -s on most operating sys-
tems) could be added to the ipNetToMediaTable shown above using the following
command.

In this example, setting the ipNetToMediaPhysAddress object is not actually re-
quired for creating the table entry, however, it makes sense to associate the IP address
with the hardware address within the same command.

Some system tables contain MIB objects for which only one instance is possible (the
admin table for example; which among other things, contains the TCP port numbers
the BRICK uses). Logically these tables (called static tables) can only contain one row.

mybrick:system> ipNetToMediaIfIndex=1000 ipNetToMediaNetAddress=192.168.6.6
ipNetToMediaPhysAddress=0:4:f1:a0:8:f3

mybrick:ipNetToMediaTable>

PhysAddress Instance

8:0:24:af:b2:3
0:a0:f9:c7:4:4
0:8:2:4b:4e:24
0:af:92:5a:1:2

1000.192.168.6.140
1000.192.168.6.12
2000.192.168.6.5
2000.192.168.6.37

DB Key
(IfIndex.NetAddress)
48

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Deleting Table Entries
To delete a table entry the variable (in the row that you want to delete) containing the
delete flag must be set to delete . The delete flag is denoted by the (–) character in pa-
rentheses in the column name.

As mentioned above the database key identifies all instances of MIB objects on a spe-
cific table row. This key could be used to identify a specific instance of the delete object
thereby deleting a complete table row. The format is <MIB object>:<DB Key>=delete.
The first row in our ipNetToMediaTable could be deleted in this manner using the com-
mand:

ipNetToMediaType.1000.192.168.6.140=delete

So that you don’t have to decipher database keys (which can sometimes be long and
consist of multiple variables) the best way to remove a table entry is to append the table
row number to the delete object (separated by a colon). The format is <MIB Ob-
ject>:<inx number>=delete. The same row could be deleted from our ipNetToMediaT-
able using:

ipNetToMediaType:0=delete

or

ipNetToMediaTable:0=delete

The row numbers of each table are indicated by the inx number which is shown
when displaying a table’s contents to the screen.

Editing Table Entries
The contents of a specific instance of a MIB object, i.e., the contents of a specific table
cell, can be changed. Both methods mentioned in Deleting Table Entries can be used.

NOTE Some system tables are not intended to be changed
manually (e.g., tables that contain ISDN call or IP session
logging information) an only contain Read-Only varia-
bles. Although MIB objects are marked as index variables
(with an *) in these tables they’re also marked ro ; mean-
ing that only the BRICK can update these tables.
49

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Again the preferable (easier) method involves using the inx value to identify the table
row.

We could change the hardware address associated with IP address 192.168.6.5 in our
ipNetToMediaTable with either of the following commands.

ipNetToMediaPhysAddress.1000.192.168.6.5=0:0:f3:a0:3:f1

ipNetToMediaPhysAddress:0=0:0:f3:a0:3:f1

Of course variables can only be assigned values that are appropriate to the respec-
tive Object Types.
50

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

BRICK Interfaces
One of the key concepts used on the BRICK is the idea of interfaces; however, several
different types of interfaces are used. These include the following which are described
below.

• Special Interfaces
• Hardware Interfaces (i.e., the physical interface)
• Software Interfaces (also referred to as virtual interfaces)

The numeric value of the ifIndex variable, used in many BRICK system tables iden-
tifies a specific BRICK interface. The ifIndex is a five digit number (leading 0s are nor-
mally not shown) that identifies the interface’s type and some of the special character-
istics of the interface which are described in the following sections.

This shows the initial breakdown based on the interface types; software and hard-
ware interfaces can be broken down further according to their specific characteristics.
This is explained in the following sections.

Type Range Comments

Special Interfaces

0 The REFUSE Interface

1 The LOCAL Interface

2 The IGNORE Interface

Hardware Interfaces
(Physical Interfaces)

1000

...

9999

Software Interfaces
(Virtual Interfaces)

10000
Software interfaces sequentially

ordered by category,
see: (Software Interfaces)

...

99999

SUCC

Channel
Unit
Slot
51

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Special Interfaces
Three special (destination) interfaces are available on the BRICK and are mainly useful
when creating special routes for handling different situations depending on the char-
acteristics of the interface.

These interfaces are always listed first in the ifTable (Interface Table) and have the
following characteristics.

The REFUSE Interface (ifIndex = 0)

When packets are routed to the REFUSE interface (in the ipRouteTable and the ipEx-
tRtTable) the packet is discarded and an "ICMP Destination unreachable” message is
transmitted to the sender; i.e., the host at the address identified in the Source IP Ad-
dress field of the IP datagram (see the diagram of the Internet Layer in Chapter 6).

The LOCAL Interface (ifIndex = 1)

Packets routed to the LOCAL interface are given to an appropriate internal process on
the BRICK such as the BRICK’s minipad application.

The IGNORE Interface (ifIndex 2)

Packets routed (via the ipRouteTable and the ipExtRtTable) to the IGNORE interface
are discarded meaning that the packet is not forwarded. This destination interface is
similar to the REFUSE interface with one exception. No status information is transmit-
ted to the sender for packets routed to this interface.
52

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Hardware Interfaces
BRICK hardware modules are listed by SBus slot in the biboAdmBoardTable. Both Fea-
ture Modules (FM) and Communications Modules (CM) are shown there. Communi-
cations modules that provide hardware interfaces routing capable of routing are listed
in the ifTable and are identified by ifIndex values that are in the range:

These interfaces consist of Point-To-Multipoint interfaces (such as ethernet, and to-
ken ring interfaces), and Point-To-Point interfaces (such as ISDN S0, ISDN S2M, and
X.21 interfaces).

Point-to-Multipoint

Point-to-multipoint interfaces (Ethernet and Token-Ring) are listed in the ifTable. The
value of the ifIndex and ifDescr objects are encoded as follows.

The ifIndex shown above identifies a point-to-multipoint interface installed in slot
1. On most systems this is the CM-BNCTP ethernet module but may also be a token
ring module (CM-TR). The biboAdmBoardTable entries would verify this module.
This hardware interface uses SNAP framing. For information on the frame formats
used with point-to-multipoint interfaces refer to Appendix B).

ifIndex HW Interface ifIndex

1000 ≤ value < 10000

ifIndex: 1 0 0 2 ifDescr: en1-snap

000 = en1
001 = llc
002 = snap
003 = nov802.3

Framing method

Slot Number where
this module is installed.
53

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Point-to-Point

Point-to-point interfaces include various forms of X.21, X.25, and ISDN interfaces.
These different types of point-to-point interfaces depend on the type of installed hard-
ware, how the hardware is configured, and where (which SBus slot) the hardware is
installed.

X.21 Interfaces
• X.21 interfaces are listed in the ifTable. Only the slot digit is used and identifies

the applicable slot for the CM-X21 module (i.e., 3000 for CM-X21 in slot 3). A
corresponding entry (x21IfIndex) is also present in the x21IfTable.

X.31 Interfaces
• X.31 (in the D-Channel) Interfaces

X.31 interfaces are listed in the ifTable. A corresponding entry is also found in
the x25LinkPresetTable. The ifIndex used for X.31 interfaces is encoded as fol-
lows.

ISDN Interfaces
• Dialup Interfaces

ISDN Dialup interfaces are not listed in the ifTable since they do not provide
directly routeable interfaces; this is where the software interfaces are required.

• ISDN Leased Line Interfaces
Leased line interfaces are listed in the ifTable since these interfaces identify a
directly routable interface. Two types of leased line interfaces exist: interfaces

ifIndex 2 0 5 6 x31d2-0-23ifDescr

Slot #

Slot #

1.) 0 - 32 are reserved for ISDN leased B-Channel interfaces

Unit #

TEI #

TEI (+33)1
54

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

consisting of a single ISDN B-channel (S0) and interfaces that consist of multi-
ple ISDN B-Channels (S0 or S2M), called Bundles.
For Leased line interfaces consisting of a single B-Channel, the ifIndex and if-
Descr objects are encoded as follows:

For bundle interfaces the ifIndex and ifDescr objects are encoded as follows:

Software Interfaces
Software interfaces are also referred to as virtual interfaces since they are mapped to
one or more hardware interfaces (point-to-point or point-to-multipoint). The most
common examples are dial-up ISDN partner interfaces. When setting up these soft-
ware interfaces you may decide to associate one or more ISDN B-channels from one or

ifIndex: 2 0 0 2 ifDescr: bri2-0-2

Leased
B-Channel

Channel
Number

Slot #

Unit # Unit #

ifIndex: 9 0 2 0 ifDescr: bundle20

Always 9

Bundles
index

Bundle

for Bundles

Unit #

Slot #

Unit #

Slot #
55

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

more ISDN ports (BRICK-XM and BRICK-XL only) that are used to accept calls from,
or place calls to, the partner.

Software interfaces are listed in the ifTable and are identified by ifIndex values that
are in the range:

Software interfaces can be further distinguished as follows:

ifIndex SW Interface ifIndex

10001 ≤ value < 29999

ifIndex SW Interface Type

10001 ... 14999
15001 ... 15999
18001 ... 19999
20000 ... 29999

Dial-Up ISDN Interfaces
RADIUS Interfaces
Frame Relay over ISDN Interfaces
Multiprotocol over X.25 Interfaces
56

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

BRICK Configuration Files
BRICK configuration files are stored either locally on the BRICK or on a remote host
(TFTP server). When booting this information is loaded into memory and becomes the
BRICK’s active configuration.

Configuration files stored locally on the BRICK are stored in FLASH PROM (pro-
grammable read-only memory) memory which we simply refer to as flash. The con-
tents of flash can be seen as a directory whose contents are listed in the biboAdmCon-
figDirTable. Configuration files stored in flash can be managed using the commands
described in Managing FLASH files below.

Configuration files can be sent to or retrieved from remote hosts using the TFTP
commands described in Transferring Files with TFTP.

The system can also be rebooted using the cmd=reboot command described in Re-
booting the System.

Managing FLASH files
To help you manage different configuration files, the BRICK uses the biboAdmConfig-
Table. This table contains the fields Cmd, Object, Path, Pathnew, Host, State, and File. This
table is read by the configuration daemon, the configd process, which periodically:

1. Reads table entries.
2. Performs requested actions, using the respective field values as command pa-

rameters.
3. Updates the respective State field according to the State of the requested com-

mand.
4. Removes table entries once the respective action is performed.

An action is requested by assigning a value to the fields appropriate to the com-
mand, the configd process executes the requested actions.

The State field is updated intermittently while performing the action. The State field
may be; todo, running, done, or error, depending on the status of the requested action. If
the command resulted an error condition, you can find a detailed explanation of what
caused the error by viewing the biboAdmSyslogTable. Once the requested action is
completed the results can be seen by viewing the biboAdmConfigDirTable.

Configuration files can be stored on the BRICK (i.e., in flash) using the commands
shown below. Although this information is presented in command syntax notation the
57

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

actual commands simply involves assigning various parameter values to the contents
of the biboAdmConfigTable.

cmd=save [path= <dirname>] [object= <tableobj>]
cmd=load [path= <dirname>] [object= <tableobj>]
cmd=delete path= <dirname> [object= <tableobj>]
cmd=copy path= <oldname> pathnew= <newname>
cmd=move path= <oldname> pathnew= <newname>

Saving Configuration Files

The BRICK allows you to have multiple configuration files as long as there is enough
room in flash to store them. To make sure that your configuration information (and any
changes you have made while the system is running) is available after every system
bootup, you must instruct the BRICK to write the configuration data. This is done by
assigning the value “save” to the biboAdmConfigCmd field.

Usage:
cmd=save [path= <dirname>] [object= <tableobj>]

Optional arguments:
path Specifies the file in flash to write data to.

The default value is “boot”. If dirname contains spaces, the
name must be enclosed in double quotes.

object Specifies the object(s) to save. Either a specific table of
information can be saved or a complete configuration. If no
objects are specified, all tables are written to path.

The result of this command is that all Read-Write information is written to the file
specified by path. If the optional parameters are not used, the complete configuration
(all tables) is saved to the "boot." file.

For example,

cmd=save

Tip When using third party SNMP managers configuration
data can be managed by accessing the respective
objects in the biboAdmConfigTable.
58

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

would write all configuration information to flash as “boot”. If you want to save just
the ipRouteTable in the file test , you could issue:

cmd=save path=test object=ipRouteTable

You can verify the actions have been completed by listing the entries in biboAdm-
ConfigDirTable. You should see a listing of each configuration file you saved. Each line
shows you the name of the file (Name), the number of tables saved in the file (Count),
and the contents of the file (Contents), i.e., “all” or a list of individual table numbers
separated by colons.

Loading Configuration Files

During system initialization, the default configuration file ("boot") is loaded into mem-
ory. This boot file may be loaded locally or via a remote system, using BootP. The work-
ing state of the BRICK is dependent upon on the configuration information in active
memory. A new configuration file (or a single table) can be loaded into memory from
flash while the system is running. This is done by assigning load to biboAdmConfigC-
md.

Usage:
cmd=load [path= <dirname>] [object= <tableobj>]

Optional arguments:
path Specifies the file in flash to load data from.

Default is “boot”. If dirname contains spaces, the
name must be enclosed in double quotes.

object Specifies the object(s) to load into memory. All tables can be
loaded from a file or individual tables. If no objects are
specified, all tables are loaded from path.

For example, to load a configuration from flash from the file “test”

Note: The internal procedure of writing configuration files can
take between 5 and 20 seconds. It is strongly recom-
mended that during this time no additional changes be
made to the configuration. Verify your current changes
before making additional ones.
59

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

cmd=load path=test

would be used; while the command

cmd=load path=test object=admin

would only load the Admin table from “test”. After loading configuration information,
changes take effect automatically since the information is loaded directly into memory.

Deleting Configuration Files

Deleting complete configuration files or specific tables within them is done by assign-
ing “delete” to the Cmd field.

Usage:
cmd=delete path= <dirname> [object= <tableobj>]

Required arguments:
path Specifies the file in flash RAM to remove data from.

Default is “boot”. If dirname contains spaces, the
name must be enclosed in double quotes.

Optional arguments:
object Specifies the objects to remove. If no objects are specified,

all tables are removed from <path>.

For example, to delete all configuration information from flash file “test”,

cmd=delete path=test

could be used; to delete only the ipRouteTable from the flash file “test” you could
use

cmd=delete path=test object=ipRouteTable

Copying Configuration Files

To copy configuration files you can assign the value “copy” to the biboAdmConfigCmd
object. When using “copy” the parameters differ slightly from their previously dis-
cussed usage.
60

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Usage:
cmd=copy path= <oldname> pathnew= <newname>

Required arguments:
path Specifies the file in flash to copy data from. If path

contains spaces, it must be enclosed in double quotes.
pathnew Specifies the new file in flash to write the data to. If pathnew

contains spaces, it must be enclosed in double quotes.

This command is not capable of selecting individual tables from path; only complete
files can be copied. Thus, the command:

cmd=copy path=boot pathnew=backup

copies the configuration file “boot” to the file “backup”.

Moving Configuration Files

You can assign the value “move” to the Cmd field to rename configuration files. This
has the same effect as issuing the cmd=copy and cmd=delete commands consecutively.

Usage:
cmd=move path= <oldname> pathnew= <newname>

Tip When deleting configuration files you may notice that
the amount of available memory space shown in the
biboAdmConfigDirTable is not adjusted. This is because
flash can’t be erased progressively; configuration files
are only marked for deletion. When the flash becomes
full, the system automatically reorganizes flash RAM,
deleting previously marked data.

Note: You can delete the contents of the flash RAM com-
pletely by assigning “/” to the path parameter. It is rec-
ommended however, that you save all configuration
information to a remote host using TFTP and the
cmd=put assignment before using this syntax.
61

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Required arguments:
path Specifies the file in flash to remove.
pathnew Specifies the new file in flash to create.

The result of this operation is that the file <oldname> is renamed to <newname>. To
rename the “boot” file to “oldboot” use the command:

cmd=move path=boot pathnew=oldboot

Transferring Files with TFTP
Using TFTP (Trivial File Transfer Protocol) you can transmit and retrieve configuration
files to and from remote hosts on your network. This is made possible using three ad-
ditional enumerated values for the biboAdmConfigCmd object: put , get , and state .

To exchange configuration files with remote hosts you must first set up a TFTP serv-
er on these hosts. Information on setting up a TFTP server on UNIX machines is pro-
vided in Chapter 5 in Setting up a TFTP Server. A TFTP Server application for PCs is
included with BRICKware for Windows.

The commands used for exchanging configuration information among remote TFTP
hosts are as follows.

cmd=put host= <a.b.c.d> [path= <flashname>] [file= <filename>]
[object =<tableobj>]

cmd=get host= <a.b.c.d> [path= <flashname>] [file= <filename>]
[object= <tableobj>]

cmd=state host= <a.b.c.d> [file= <filename>] [object= <tableobj>]

Sending TFTP Files

Once TFTP is setup you can assign “put” to the biboAdmConfigCmd object to transmit
configuration information stored in flash to a file on a remote host. Only Read-Write
information is included in the file.

Note: Configuration files may contain the current passwords
for the Read, Write and Admin Communities. If you use
the cmd=put or cmd=state commands to transfer
BRICK configuration files to remote hosts, you should
also control access to these files for security reasons.
62

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The TFTP file to be written on the remote host must already exist (and, for UNIX
hosts, must be world writable) prior to executing the command.

If problems occur in connection with older BSD based TFTP servers see the Special
Note: in Chapter 5.

Usage:
cmd=put [host= <a.b.c.d>] [path= <flashname>]

[file= <filename>] [object= <tableobj>]

Optional arguments:
host Specifies the IP address of the host to send information to.

A hostname can also be used if it can be resolved via DNS.
If not specified the address set in biboAdmNameServer is
used by default.

path Specifies the file in flash RAM to copy data from.
If not specified the default flash file is “boot”.

file Specifies the TFTP file to create on the remote host.
The file name is relative to the TFTP-boot directory
configured on the host. (The default is C:\BRICK for PCs
running DIME Tools’ TFTP Server; or the last field of the
tftp entry in /etc/inetd.conf on UNIX systems.)
The file name defaults to “brick.cf” if <file> is not specified.

object Specifies the table objects(s) to send. Either a specific table,
or a complete configuration file can be sent. If no objects are
specified, all tables are sent by default.

To retrieve the ifTable from the flash file "temp" and store the information in file
"file.cf" on the host at 192.168.3.4 this command would be used:

cmd=put host=192.168.3.4 path=temp file=file.cf ➯
object=ifTable

Retrieving TFTP Files

You can also retrieve configuration data from remote hosts by assigning “get” to the
biboAdmConfigCmd object. Once the retrieved file (or table information) is written to
flash, the information can then be loaded into memory with cmd=load for it to take ef-
fect.
63

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Usage:
cmd=get [host= <a.b.c.d>] [path= <flashname>]

[file= <filename> object= <tableobj>]

Optional arguments:
host Specifies the IP address of the host to retrieve data from.

A hostname can also be used if it can be resolved via DNS.
If not specified the address set in biboAdmNameServer is
used by default.

path Specifies the file in flash to write data to. If the file already
exists in flash its contents are overwritten. The default flash
name is “boot”.

file Specifies the file on the remote host to retrieve data from.
If not specified the TFTP file named “brick.cf” is requested.

object Specifies the object(s) to retrieve. Here, either a specific
table or a complete configuration file can be retrieved. If not
specified all system tables are retrieved.

For example, using the command

cmd=get host=192.168.3.4 path=file.cf file=temp ➯
object=ifTable

would retrieve the ifTable from the file file.cf on host 192.168.3.4 and save it in a flash
file named “temp”.
64

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Transmitting State Information

The previously mentioned TFTP commands only send or retrieve variables with Read-
Write status. They also send/retrieve information from files stored in flash. Using
“cmd=state”, you can save all configuration information currently in memory and
send the data to a remote TFTP host. This information includes Read-Write AND Read-
Only data such as status/accounting information.

The TFTP file to be written on the remote host must already exist (and, for UNIX
hosts, must be world writable) prior to executing the command.

If problems occur in connection with older BSD based TFTP servers see the Special
Note: in Chapter 5.

Usage:
cmd=state [host= <a.b.c.d>] [path= <flashname>]

[file= <filename>] [object= <tableobj>]

Optional parameters:
host Specifies the IP address of the host to send data to.

If not specified the current value of biboAdmNameServer is
used by default.

file Specifies the file name on the remote host to write data to
(and is relative to the TFTP boot directory on that host).
If not specified the default file name is "brick.st".

object Specifies the table(s) to retrieve data from. If no
objects are specified, the contents of all tables are sent.

For example, using

cmd=state host=1.2.3.4 file=brick1.st ➯
object=system

would retrieve all data from the system table and places it in “/tftpboot/brick1.st” on
host 1.2.3.4 (if present the file is overwritten).

cmd=state host= <IP Address>

Tip If you need to contact BinTec support, it is recom-
mended that you have a complete state file available.
This would be done with the command shown below.
65

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

where <IP Address> identifies a TFTP host you have access to.

Transferring Files with XMODEM via Serial Port
It is possible to load and save configuration files via the serial interface using the pro-
tocol XMODEM. Therefore the variable file is assigned the value xmodem or xmodem-
1k. xmodem-1k uses a packet size of 1024 byte (default: 128 byte) and in general reach-
es a higher throughput. The packet size is defined by the sender so that the value xmo-
dem-1k only makes sense on the sending end; on the receiving end it is ignored.

To make use of this new feature you have to access your BRICK from a computer via
the serial port and a terminal program.

Getting the Configuration

cmd=get file=xmodem path=new_config

loads a file received via XMODEM with the name new_config into the flash ROM of
the BRICK.

After this command has been started the terminal program must be set to Send (Up-
load) and the transmission protocol (XMODEM) as well as the source file name and lo-
cation must be entered. For the time of the file transfer the console cannot be used.

Putting the Configuration

cmd=put file=xmodem path=boot

sends the BRICK’s flash ROM file boot via XMODEM.
After this command has been started the terminal program must be set to Receive

(Download) and the transmission protocol (XMODEM) as well as the destination file
name and location must be entered. For the time of the file transfer the console cannot
be used.

Transmitting State Information

The previously mentioned commands only send or retrieve the configuration files con-
taining variables with Read-Write status. They send/retrieve information from files
stored in flash. Using “cmd=state” you can save all configuration information current-
66

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

ly in memory. This information includes Read-Write AND Read-Only data such as sta-
tus/accounting information.

cmd=state file=xmodem

When nothing is specified the currently selected baud rate is used for the transfer. The
transfer baud rate can be changed by adding @baud to the file variable, e.g.:

cmd=put file=xmodem@9600 path=boot

Possible baud rates are 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200. For trans-
mitting data to the BRICK (cmd=get) you should not select a rate higher than 9600. Se-
lecting higher than default baud rates may result in transmission errors. There are no
limitations for BIANCA/BRICK-XL/XL2.

In case of transmission errors a syslog is generated.
This feature can only be used via the SNMP shell, not via Setup Tool.

Rebooting the System
The system can also be rebooted via SNMP by assigning “reboot” to the biboAdmCon-
figCmd object. This can be used for example, to stop and restart the system remotely
from a telnet, isdnlogin, or minipad session.

cmd=reboot

No additional parameters are required.

Note: If you use cmd=put or cmd=state to transfer
BBRICK configuration files, you should also con-
trol access to these files for security reasons.
67

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

4

ISDN Connections on the BRICK

What’s Covered?

■ ISome background on ISDN

• B and D Channels
• ISDN Interfaces

Basic Rate Interface
Primary Rate Interface

• Called & Calling Party’s Numbers
Local Number

• ISDN Screening Indicator

■ Attached ISDN hardware
• ISDN Auto Configuration
BIANCA/BRICK Software Reference
■ ISDN Call Dispatching
• Overview
• Dispatching Algorithm

Routing Service
Login Service
Pots Service
CAPI Service

■ ISDN Line Management
• ShortHold
• Bandwidth on Demand
• Multiple Link Support
Chapter Four
1ISDN CONNECTIONS

ON THE BRICK
68

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Some background on ISDN
The term ISDN (Integrated Services Digital Network) was defined by the ITU-T (for-
merly CCITT) and describes a telecommunications service package supported by tele-
phone companies around the world. As an enhancement to the existing public tele-
phone network, ISDN allows voice, data, video, etc. to be transmitted over existing
telephone lines using digital transmission. This allows ISDN users to access multiple
services such as telephony, telex, teletex, fax, videotex, and X.25 networking simulta-
neously from one access point. The ISDN access point, often called subscriber outlet,
consists of a standard RJ-45 twisted pair port.

The subscriber outlet can be seen as the user end of a sort of ‘digital-pipe’ which
transfers digital traffic to and from the local telephone company. This digital pipe al-
lows data transfers using a number of channels, commonly known as the B and D
channels.

B and D Channels
B-channel: The B-channel is used for transferring user data; text, data, voice and still
images in full duplex mode. The B-channel can handle data transmission at a rate of
64 kbps.

D-channel: The D-channel’s primary function is for signalling between the user
equipment (telephone, facsimile, computer, etc.) and the telephone company. The D-
channel can handle data transmission at a rate of 16 kbps. In Euro-ISDN the D-chan-
nel can also be used for transferring user data.

ISDN Basic Rate Interface

B Channel

D Channel

B Channel 64 kbps

64 kbps

16 kbps
69

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

ISDN Interfaces
The capacity and type of service this digital pipe provides can vary and depends on the
type of access you have to the ISDN. The most common types of ISDN interfaces,
which are defined by the ITU-T, are the basic rate interface (BRI) and the primary rate
interface (PRI). These in turn determine the number of available channels within the
pipe and the transfer rates used by each channel.

Basic Rate Interface

An ISDN basic rate interface, or BRI is sometimes called an S0 interface. It provides
two B-channels (64 kbps each) and one D-channel (16 kbps) allowing for a total user
data rate of the 144kbps (2 x 64 kbps + 16 kbps). Up to eight end-devices can be con-
nected to an S0 interface, including telephones, facsimile machines, computers etc.

The network sends control messages over the D-channel to establish connections
with the end-devices corresponding to the type of service requested. Two different
end-devices can be used simultaneously and independently via a single S0 interface.

Primary Rate Interface

A primary rate interface, or PRI, is sometimes called an S2M interface. It provides 30
B-channels and one D-channel. As with a BRI the D-channel is used for signalling
but since 30 B channels need to be managed in a PRI, the D-channel has a data rate
of 64 kbps. This allows for a total user data rate of 1.984 Mbps (31 x 64 kbps).

In North America, a PRI consists of 23 B-channels and one D-channel. The differenc-
es between the number of channels are historically based and relates to voice tech-
nologies that existed when ISDN was developed.
70

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Called & Calling Party’s Numbers
The signalling used in setting up ISDN calls includes information that identifies both
the caller and callee and is referred to as the Calling Party’s Number and Called Party’s
Number respectively. Both addresses consist of a Local Number and an optional Sub-
address. The calling party and called party numbers are sometimes called directory
numbers in the ISDN world.

Local Number

Most ISDN basic rate interfaces today come with three separate telephone numbers.
These numbers are commonly used to identify specific telecommunications equipment
at a subscriber’s site. For example, the caller in the diagram above might have the ISDN
numbers 2925, 2926, and 2927. Euro-ISDN and National-ISDN in Germany use differ-
ent names and procedures for identifying separate local numbers.

• Euro-ISDN
In Euro-ISDN, the DSS1 signalling protocol is used. Depending on the type of
service arrangement with the local telephone company, the subscriber receives

NOTE: Subaddressing in ISDN should not be confused with the dif-
ferent local numbers available in Euro ISDN and 1TR6
(National ISDN in Germany). Subaddressing is not available
in the 1TR6 protocol. In other ISDN protocols subaddresses
are optional and usually have to be purchased separately
from the ISDN provider.

ISDN S0S0

C

B

A
D

E

F

35122925

Calling Party’s Address Called Party’s Address

2925 3512... FA

Subaddress
Local-Number

CalleeCaller
71

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

three or more Local Numbers. These numbers are called MSNs (multiple sub-
scriber number). Additional MSNs can normally be purchased from the ISDN
service provider.

• 1TR6 (National ISDN in Germany)
In Germany, the 1TR6 signalling protocol is used. The ISDN number assigned
by the telephone company, e.g. 0911 / 99002, can be extended by appending an
additional digit (known as the EAZ, or Endgeräteauswahlziffer) to this
number. Up to nine different EAZ numbers (1...9) can be used. EAZ 0 is used
as a global, to allow all equipment to receive incoming calls in parallel. This
signalling protocol is not supported by PABX-BRICKS and, in any case, will no
longer be supported in the new millenium, as it is being replaced by the DSS1.

ISDN Screening Indicator
The ISDN screening indicator is a service provided by ISDN that can be used to test the
trustworthiness of the calling party’s number. The calling party’s number (CPN) re-
ported by an incoming call may have been assigned by the user placing the call or by
the telephone switching station.

If the CPN was assigned by the user the switching station may optionally verify this
address is correct in order to detect malicious calls. The party (user or network) that
assigned the CPN and whether or not the CPN has been verified is reported in ISDN
in the Screening Indicator field of the call packet. The values shown below are used and
indicate the respective circumstances.

Screening Indicator CPN assigned by Status of Calling Party’s Number

network network The CPN was set by the network.
(verification not required)

user-verified user The CPN was set by the user
and was verified by the network.

user user The CPN was set by the user
but no verification was attempted.

user-failed user The CPN was set by the user
and verification of the number failed.
72

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Attached ISDN hardware

ISDN Auto Configuration
The ISDN auto configure procedure attempts to verify:

1. The presence of each ISDN interface.
2. Which type of D channel protocol is used.
3. Which TEI procedure is used.

Normally, the BRICK attempts to configure its ISDN interface(s) automatically at
boot time (see Turning Off Auto Configuration). If your ISDN module is installed, the
auto configuration process is started once the module is connected to your subscriber
outlet. The configuration process can also be started manually while the system is run-
ning (see Restarting Auto Configuration).

Once the auto configure process is complete (see Verifying Auto Configuration) the
BRICK initializes a protocol stack for each D channel. The results of the auto configure
process are then written to the isdnStkTable which lists the attributes of each ISDN
stack. Access to the ISDN is possible once the following objects are defined:

Verifying Auto Configuration

You can verify whether the auto configuration procedure was successful. First, display
the status of the auto configure process by displaying the isdnIfTable. If the Autocon-
figState field is set to done , then the auto configure procedure is complete.

Next, verify the operational status of the interface by viewing the isdnStkTable. If
the Status field is set to loaded then auto configuration was also successful. The in-
terface is ready to accept connections.

isdnStkTable
Field Must be:

ProtocolProfile dss1 or dtr6

Configuration point_to_point or
point_to_multipoint

Status loaded
73

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Turning Off Auto Configuration

As long as isdnIfAutoconfig is set to on (the default), auto configuration will be per-
formed. If set to off then information for the respective interface will not be config-
ured, but will be loaded from the isdnStkTable instead.

Restarting Auto Configuration

If auto configuration was not successful you can restart the procedure by assigning
start to the isdnIfAutoconfigState field of the isdnIfTable .

isdnIfAutoconfigState:0=start
74

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

ISDN Call Dispatching

Overview
The BRICK uses an internal Dispatching Algorithm to dispatch incoming ISDN calls to
various services based on the Called Party Number, or CPN, signalled by the ISDN.
Currently, BRICK services include:

• Routing Service The PPP service is the BRICK’s main routing service.
This service is used for incoming data calls for dialup
network connections from ISDN WAN partners.

• Login Service The login service provides access to the SNMP shell.
• Pots Service The pots service is only available on the V!CAS and

is for calls that need to be routed to attached analog
devices (V!CAS POTS ports A and B).

• CAPI Service The CAPI service is used for incoming calls from
remote CAPI applications (version 1.1 or 2.0) that
need to connect to CAPI application running on a
workstation on the BRICK’s LAN.

The basic procedure for dispatching incoming calls
shown here simply means that when an incoming call
is received, the BRICK then searches the isdnDis-
patchTable for an entry that matches the CPN. If a
match is found the call is given to the appropriate serv-
ice which may decide to accept or reject the call based
on other information relating to the call. If no match is
found the call is given to the CAPI service which in-
forms CAPI applications on the LAN of the call.
These decisions are described in further detail in the
following sections. Note that the dispatching table is
also used for outgoing calls too. This is covered in the
section Outgoing Calls.

Check Dispatch Table

Inform BRICK Service

PPP Login Pots CAPI

Called

Accept / Reject Call

Party
Number

ISDN
75

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Dispatching Algorithm
This diagram shows the initial steps used to dispatch incoming calls on the BRICK. In-
formation relating to each step is listed on the following page. Additional steps taken
by the respective services are described separately.

Routing Service Login Service Pots Service CAPI Service

no no match found

no no no

no no

no

yes

yes yes yes

yesyes

yes

Item = ppp
?

Is

Called Party #
=

Find match for:

LocalNumber

signalled as
data

Call

?

Item = login
?

Is
Item = pots

?

Is

signalled as
telephony

Call

?

LoginOn-
PPPDispatch

enabled
?

“Call Timeout”

match found

DispatchTable
empty?

Is

Start
➊

➋ ➋ ➋

➌ ➌

➍

BRICK Service accepts Call or allows call timeout
GettLos Geht’s
 ing Started User’
s Guide BRICK
ware Exte
76

nded Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

➊

Here, the isdnDispatchTable is searched for a matching entry. Note that since this is an
incoming call, only entries with Direction = both or incoming are valid in this context.
A match is found if the Called Party’s Number matches the LocalNumber field. It is im-
portant that each MSN is mapped to no more than one service.

➋

The Item field of the matched entry determines which BRICK service is informed of the
call.

➌

Note that the ISDN may signal a call (just another term for identifying the calls type)
as being a data or a telephony call. This step has been implemented for sites that only
have one MSN. See step 4.

➍

This additional step has been implemented for sites that only have one
MSN. Since these sites will have to use their sole MSN for the routing service this step
allows them to dispatch calls to the login service using the isdnLoginOnPPPDispatch
variable.

The isdnlogin command (from the SNMP shell) can be used from a remote BRICK
to establish an ISDN call to a BRICK with one MSN (and appropriately configured) us-
ing the servicename “telephony”.

isdnlogin <telephone number> telephony
77

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Routing Service

The Routing service decides whether to accept or reject the call based on the diagram
shown below.

➊

Here, the Calling Party’s Number transmitted via the ISDN is compared to each entry’s
Number field in the biboDialTable. This is the first step of “OUTBAND” authentica-

no

no no no

no

yes

yes yes yes

yes

no

CHAP|PAP
for caller

Using

CHAP|PAP
successful

Was

➍ ➎

➌➐ ❽

no no

yes

➋➊

RADIUS server
?

Using

Routing Service

Does
Calling Party

Number
match

partners w/o
incoming #

Have
biboPPPTable

empty?

Is

RADIUS verify
caller

Did

yes

yes

yes yes

no

nono
indicator ⁄
Screening

ISDN

Screening this
caller

Are we
RADIUS server

?

Using

RADIUS verify
caller

Did

➌

➏ ➏

➌

yes

C
a

ll
Ti

m
e

o
ut

Accept Call

(Main)
GettingLos Geht’s
 Started User’s G
uide BRICKwar
78

e Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

tion, also known as Calling Line ID. Note that even if a match is found the caller still
has not incurred any charges at this point.

➋

If the Calling Party’s Number couldn’t be matched in the DialTable the BRICK checks
to see if any WAN partner’s exist (biboPPPTable) that do not have an incoming
number (biboDialDirection = both or incoming).

➌

If a RADIUS server is configured in biboAdmRadiusServer this step resolves as yes.
The call is then initially accepted (charges are incurred by the caller) if it hasn’t already
been, and the RADIUS server is consulted.

➍

The Screening field from the matched DialTable entry from step 1 determines whether
screening should be performed for calls from this number. If Screening for this entry is
set to dont_care the screening feature is not being used. Screening is the second step
of OUTBAND authentication; meaning that ISDN charges for the caller still have not
been incurred.

Background information on ISDN Screening is covered the section ISDN Screening
Indicator.

➎

WAN partners configured to use CHAP and/or PAP authentication are identified in
the biboPPPTable by the Authentication field which will be set to either; pap , chap ,
or both .

Once the dispatching algorithm reaches this step, the ISDN call is initially accepted
to perform INBAND authentication.
79

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

➏

If the RADIUS server was able to verify the caller, the BRICK accepts the call and es-
tablishes the network connection according to the parameters provided by the RADI-
US server. Otherwise, the call is disconnected.

➐

When screening incoming calls, the biboDialScreening variable is compared to the
screening indicator provided by the ISDN. The value provided by the ISDN must be
greater than or equal to biboDialScreening.

❽

The last step for WAN partners that must authenticate via CHAP or PAP.
80

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Login Service

The Login Service may accept or reject an incoming call based on the diagram shown
below.

➊

Here, the isdnLoginAllowTable is searched for a matching entry. A match is found by
comparing the Calling Party’s Number with the Number fields of each entry. Note that
the number field supports wildcard characters and multiple entries may match an in-
coming call. A match without wildcards is always used before a match with wildcards.

➋

Once a match is found the value of the isdnLoginAllowScreening field is compared
with the screening indicator provided by the call setup packet. The call is accepted if
the indicator (from the setup packet) is greater than or equal to the Screening field.

no

no

yes

yes

➋

no

➊

Login Service

Does
Calling Party

Number
match

LoginAllowTable
empty?

Is

yes

indicator ≥
Screening

ISDN

Accept Call

C
a

ll
Ti

m
e

o
ut

(Main)
Getting StartedLos Geht’s User’s G
81

uide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Pots Service

The Pots Service on the V!CAS may accept or reject an incoming call based on the dia-
gram shown below. The Pots service is currently only available on the V!CAS.

➊

The Slot and Unit fields of the matched isdnDispatchTable entry determine the desti-
nation device for the call. The corresponding device entry is located in the potsIfTable.
The Type field there, determines which types of calls the device supports. See the sec-
tion on POTS Interfaces in Chapter 12 for more information on the pots devices.

no

yes

no

➊
Does

DspSlot-Unit
support call

type

yes

potsTable
empty?

Is

Pots Service

Multiple isdnDispatchTable

match this test is performed.

(FAX, voice, modem calls)

Accept Call

C
a

ll
Ti

m
e

o
ut

entries may match. For each

(Main)
Getting StartedLos Geht’s User’s G
82

uide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

CAPI Service

The CAPI service on the BRICK must inform registered CAPI clients of incoming calls.
Depending on the Dispatch Table, the type of call, and the registered applications, the
CAPI service accepts or rejects calls as follows.

no

no

yes

yes

CAPI Service

application
want call

Any

Did
DispatchTable

match
CPN

Notify all
listening CAPI

1.1 and 2.0 apps
(capiListenTable)

Notify all
listening CAPI

2.0 apps
(capiListenTable)

➊

CAPI 1.1 apps:
eaz =

isdnDspItem

?

CAPI 2.0 apps:
msn=

Called Party’s #

➌➋

➎➍

Accept Call

C
a

ll
Ti

m
e

o
ut

(Main)
GettinLos Geht’s
 g Started User’s Guide BRICKware
83

Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

➊

The isdnDispatchTable (LocalNumber field) is searched for an entry that matches the
called party’s number contained in the ISDN call setup packet.

➋

If a match was found from the previous step, the Item field must be set to one of the
values eaz0 through eaz9 . (see the initial dispatching diagram). In this step the
BRICK checks the contents of the capiListenTable to see which CAPI applications are
listening for incoming calls. Listening version 1.1 and version 2.0 applications will be
notified of the incoming call.

A brief overview of how the listening process is covered in the section The Remote
CAPI in Chapter 11.

➌

If the isdnDispatchTable contains entries but no matches were found (see the initial
dispatching diagram) the call defaults to the CAPI service. In this step the BRICK
checks the contents of the capiListenTable for listening applications. Since no
EAZ➝MSN mapping is involved here, only CAPI 2.0 are notified of the incoming call.
CAPI 2.0 applications use MSNs.

A brief overview of how the listening process is covered in the section The Remote
CAPI in Chapter 11.

➍

CAPI 1.1 applications use EAZs. When notifying CAPI 1.1 applications of a call, the
EAZ value is taken from the isdnDspItem field.

➎

CAPI 2.0 applications use MSNs. When notifying CAPI 2.0 applications, the Called
Party’s Number from the call setup packet (which will be the same as the LocalNumber
field if an isdnDispatchTable entry was matched) is sent as the MSN.
84

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Outgoing Calls
For outgoing calls from CAPI 1.1 applications, the BRICK compares the EAZ transmit-
ted by the CAPI 1.1 application with the contents of the isdnDspItem object. Once a
match is found, the BRICK uses the respective isdnDspLocalNumber (and isdnLocal-
Subaddress if set) object as the “Calling Party’s Address”.

ISDN Line Management

ShortHold
To help minimize ISDN charges the ShortHold mechanism is available. ShortHold
closes down unneeded dialup connections when there is no traffic to be transmitted for
a specific time period. Short hold is enabled by default for all dialup partner interfaces.
Two types of Short Hold mechanisms are available on the BIRCK; Static Short Hold
and Dynamic Short Hold.

With ShortHold you can control the amount of time to wait before closing all re-
maining B-channel(s). This means that when no packets are being sent or received, the
system will keep a minimum number of channels open until the ShortHold timer ex-
pires.

Bandwidth on Demand
By measuring current line usage at regular intervals, additional ISDN channels for a
particular connection can be opened or closed when needed.

The initiating ISDN caller assumes control for line monitoring. Every five seconds
the current throughput rate is measured. When throughput rises above an upper
bound an additional channel is opened. If the throughput rate drops below a lower
bound unneeded channels are closed automatically. The upper and lower bounds are
defined as follows:

• Upper-bound: The most recently opened channel is at 90% usage.
• Lower-bound: The most recently opened channel is at 0% usage and the chan-

nel before that is at 80% usage.

Multiple Link Support
... ISDN partners to be run over multiple channels. By dynamically allocating band-

width (opening or closing of additional channels) higher throughput rates can be
85

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

5

System Administration on the BRICK

What’s Covered?

■ System Logging on the BRICK

■ Gathering Accounting Information
• ISDN Accounting Information
• IP Accounting Information

■ Logging with Remote LogHosts

■ Remote SNMP Administration
• Traps

■ Web Based Monitoring

■ User Accounts
BIANCA/BRICK Software Reference
■ Other Passwords

■ System Software Updates

■ BOOT Options on the BRICK
• The BOOTmonitor
• Booting via BootP
• BootP Relay Agent

■ Other System Administration Tasks
• Setting Up a BootP Server
• Setting up a TFTP Server
• Setting Up a syslog Daemon
Chapter Five
1SYSTEM ADMINISTRATION

ON THE BRICK
86

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

System Logging on the BRICK
During normal operation various messages may occasionally be generated on the
BRICK by its various subsystems (ISDN, PPP, X.25, MODEM, etc.). These messages,
called syslog messages, are generated in response to error conditions or other events
that may occur while the system is running.

A syslog message is a text string consisting of four pieces of information relating to
the event that occured. Syslog messages are stored locally in the BRICK’s biboAdmSys-
logTable. A limited number of messages are saved here (defined by the value of the bi-
boAdmSyslogMaxEntries object, default is 20); each time the system reboots existing
messages are lost.

The biboAdmSyslogTable consists of the following fields.

TimeStamp A date string of the format: MM/DD/YY HH:MM:SS that
identifies the date and time the message was generated.

Level The severity of the event; i.e., the higher the level the more
important the message is considered (see below).

Messsage The actual text of the message. The text attempts to
describe the circumstances relating to the event.

Subject The internal software subsystem that generated the
message.

Recent system messages can be displayed from the SNMP shell at any time by en-
tering message at the shell prompt.

Level

Subject

emerg

alert
crit
err
warning
notice
info

a
c

c
t

x2
1

isd
n

in
e

t
x2

5
ip c

a
p

i
p

p
p

b
rid

g
e

c
o

n
fig

sn
m

p

to
ke

n
e

th
e

r
ra

d
iu

s
ta

p
i

o
sp

f
fr m

o
d

e
m

debug X

X

isdnStkNumber 0 q931:
mandatory information

X

slot 1: Excessive Deferral
- (Transmission Problem) -
Cable Problem?

berlin: incoming link closed,
duration 12 sec, 62 bytes received,

element missing
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

87

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Accounting Messages and System Messages
Syslog messages fall into two categories; Accounting messages and System messages.
Accounting messages are generated by the acct subsystem. (See the Subject field of
the biboAdmSyslogTable above.) System messages are generated by any of the other
BRICK subsystems which, depending on the current license(s) installed on the system,
may include:

isdn inet x25 ipx capi ppp
bridge config snmp x21 token ether
radius tapi ospf fr modem

Accounting Messages

Accounting messages are used to report accounting information relating to either an
ISDN connection or an IP session that was closed/routed over the BRICK. Accounting
messages are identified (in the biboAdmSyslogTable or in a remote file on a LogHost
where syslog messages are being sent) by an initial ACCT: tag in the text of the mes-
sage. For ISDN messages, the ISDN: tag immediately follows; for IP accounting mes-
sages INET: follows.

ISDN Accounting Messages

An ISDN accounting message contains information regarding an ISDN call that was
either placed or received by the BRICK. Details for both successful and unsuccessful
ISDN outgoing calls are reported here.

Note If a B-channel is used to its full capacity for at least three
days, ISDN Accounting information can overload result-
ing in the subsequent sending of erroneous accounting
messages.

ACCT: ISDN: <Message Text ... >

ACCT: INET: <Message Text ... >

biboAdmSyslogSubject biboAdmSyslogMessage
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

88

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The content and format of ISDN accounting messages vary according to the special
formatting tags contained in the isdnAccountingTemplate. A list of possible format
tags that can be used in the accounting template and their meanings are shown below.

Format
Tag

Meaning

%S Date the connection opened; in DD.MM.YY format.

%s Time the connection was established: in HH:MM:SS format

%R Date the connection closed; in DD.MM.YY format.

%r Time the connection was closed: in HH:MM:SS format.

%d The duration of the connection in seconds.

%y Total number of bytes received over the connection.

%Y Total number of bytes sent over the connection.

%g Total packets received over the connection

%G Total packets sent over the connection.

%c Total number of charging units (value) incurred for the connec-
tion.

%C Total number of charging units (string) incurred for the connec-
tion.

%n The call’s direction; either incoming or outgoing.

%Z The local address (Calling or Called party’s number, see %n).

%z The local subaddress (Calling or Called party’s number, see
%n).

%T The remote address (Calling or Called party’s number %n).

%t The remote subaddress (Calling or Called party’s number %n).

%i Service indicator and additional information for the call.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

89

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The default accounting template setting contains the following tags:

%S,%s,%r,%d,%y,%Y,%g,%G,%C,%n,%Z,%T,%i,%u,%L

This template produces accounting messages similar to the following.

ISDN:18.08.1997,13:53:19,13:53:34,12,1096,1875,33,33,1Units,O,2,003039988452,7/0,9F,0

Changing the ISDN Accounting Template

The accounting template can be changed to meet your particular needs. As shown
above the comma character is used as the default delimiter, separating each data
field. However, since the isdnAccountingTemplate is a quoted string arbitrary
words and characters may be added as needed.

This may be useful for sites forwarding accounting messages to remote UNIX
loghosts and performing post-processing (via grep or other shell scripts). Setting the
accounting template to the value:

"%S## LinkUp@%s-Down@%r (Called %n->to %T) %c charging units"

would result in less informative, more readable messages similar to:

%b Bearer capability for the call.

%l Low layer capability for the call.

%h High layer capability for the call.

%u DSS1 error cause, if applicable.

%U 1TR6 error cause, if applicable.

%L Local (BRICK internal) error cause.

%F Call reference (BRICK internal).

%I Information about the BRICK subsystem the call was given to.

Format
Tag

Meaning
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

90

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

18.08.1997## LinkUp@17:36:08-Down@17:36:10(Called Out->to 254) 0 charging units
18.08.1997## LinkUp@17:36:08-Down@17:36:10(Called in->to 187) 7 charging units
18.08.1997## LinkUp@17:36:08-Down@17:36:10(Called Out->to 794) 5 charging units
18.08.1997## LinkUp@17:36:08-Down@17:36:10(Called Out->to 234) 4 charging units

IP Accounting Messages

IP accounting messages contain information for a specific IP session that was routed
over the BRICK. In contrast to ISDN accounting messages, IP accounting messages
have a fixed format and can’t be changed. A sample IP accounting message showing
the respective fields is shown below.

IP accounting messages are only generated for IP sessions routed over IP inter-
faces for which accounting has been enabled. This is done by settig the respective
ipExtIfAccounting variable in the ipExtIfTable is set to on .

Once accounting for an interface is turned on, active IP sessions routed over the
interface appear in the ipSessionTable. Once a session closes, either by disconnec-
tion or timeout, an accounting message is generated and is written to the biboAdm-
SyslogTable.

System Messages

System messages are generated by BRICK system software subsystems in response to
certain errors or events. Recall that all syslog messages include a BRICK subsystem tag

14.08.1997 10:57:06 124 6 10.5.5.5:1036/1000 -> 10.2.2.2:21/10002 1 71 1 144

D
a

te
 t

h
is

IP
 s

e
ss

io
n

Ti
m

e
 t

h
is

IP
 s

e
ss

io
n

Se
ss

io
n

d
u

ra
tio

n
P

ro
to

c
o

lI
d

e
n

tifi
e

r

So
u

rc
e

IP
a

d
d

re
ss

So
u

rc
e

Po
rt

Pa
c

ke
ts

se
n

t

So
u

rc
e

In
te

rfa
c

e

D
e

st
in

a
tio

n
IP

A
d

d
r

D
e

st
in

a
tio

n
Po

rt

D
e

st
in

a
tio

n
In

te
rfa

c
e

By
te

s
se

n
t

Pa
c

ke
ts

re
c

e
iv

e
d

By
te

s
re

c
e

iv
e

d

w
a

s
e

st
a

b
lis

h
e

d

w
a

s
e

st
a

b
lis

h
e

d

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

91

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

at the beginning of the message text. System messages are identified by any subsystem
tag other than the ACCT: tag .

The most common system messages are shown in Appendix E.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

92

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Gathering Accounting Information
Accounting infornation relating to active or closed ISDN connections or IP sessions on
the BRICK can be queried locally on the BRICK via various system tables or logged to
remote hosts using the syslog protocol.

ISDN Accounting Information
ISDN accounting messages contain information about ISDN calls that was either
placed or received by the BRICK.

Credits Based Accounting System
With dial-up WAN connections it may occur that charges rise because of configura-

tion errors. The Credits Based Accounting System gives BRICK administrators the abil-
ity to control charges. It allows the BRICK administrator to watch and limit the number
of connections, the connection time and the accounted charges of every subsystem dur-
ing a specified period of time. If the limit is exceeded the BRICK can’t make further
connections in that period of time. Syslog messages give you information about cred-
its, when the 90% or 100% mark for each limit and each subsystem is reached. Also,
each time a call is rejected a syslog message is generated.

The new isdnCreditsTable controls this feature, it is described in the current MIB
Reference http://www.bintec.de/download/brick/doku/mibref/index.html.

The Credits Based Accounting System can also be configured via Setup Tool: in the
main menu over ISDN to manage and activate the system; and over Monitoring and
Debugging to monitor the incoming and outgoing connections and accounted charg-
es.

Tracking Current ISDN Connections

Statistics for current ISDN calls are stored in the isdnCallTable. As long as the call is
active, the corresponding fields in this table are updated. Once an ISDN call is closed,
or disconnected, the isdnCallTable entry is removed and a new entry is created (using
the data from the isdnCallTable entry) in the isdnCallHistoryTable.

To show how these table entries are created/removed, we’ll establish a loopbacked
ISDN connection to our BRICK using our own ISDN telephone number (143) in the ex-
ample below. This assumes that incoming call dispatching has been configured allow-
ing calls to 143 to be given to the login service.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

93

http://www.bintec.de/download/brick/doku/mibref/index.html

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Using the isdnlogin program we place the call and login as admin .

mybrick: system> isdnlogin 143
Trying...
Establishing B-channel...
Connected to 143

Connected to BIANCA/BRICK-XS, mybrick, Germany

Welcome to BIANCA/BRICK-XS version V.4.5 Rev.3 from 97/08/01 00:00:00
systemname is mybrick, location Germany

Login: admin
Password:

mybrick: >
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

94

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Then we simply display the isdnCallTable to see the details of active ISDN connec-
tions.

Since we placed a loopbacked call by calling our own ISDN number a separate entry
is present for both the incoming and the outgoing call.

The Type field (shown above) identifies the direction of the call. Details of the ISDN
call are contained in the respective fields most of which are self explanatory. For infor-
mation regarding the meanings of specific fields refer to the MIB reference contained
on the Companion CD.

We can terminate the ISDN connection by ending the isdnlogin session started pre-
viously. The isdnCallTable entry is dismissed and a new isdnCallHistoryTable entry is

mybrick: > isdnCallTable
inx StkNumber(*ro) Type(*ro) Reference(*ro)

Age(ro) State(rw) IsdnIfIndex(ro)
Channel(ro) DspItem(ro) RemoteNumber(ro)
RemoteSubaddress(ro) LocalNumber(ro) LocalSubaddress(ro)
ServiceIndicator(ro) AddInfo(ro) BC(ro)
LLC(ro) HLC(ro) Charge(ro)
ReceivedPackets(ro) ReceivedOctets(ro) ReceivedErrors(ro)
TransmitPackets(ro) TransmitOctets(ro) TransmitErrors(ro)
ChargeInfo(ro) Screening(ro) Info(ro)

 00 0 outgoing 4
0 00:26:30.00 active 2000
1 login “143”

 data_transfer 0 88:90
0

553 2754 0
542 8357 0

undefined “isdnlogin”

01 0 incoming 2
0 00:26:30.00 active 2000
2 eaz3

“3”
data_transfer 0 88:90

0
558 2834 0
572 9183 0

undefined “isdnlogind”
mybrick:isdnCallTable> exit
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

95

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

created as shown below. Again, since an incoming and an outgoing call was registered,
two entries are added to the isdnCallHistoryTable.

Most fields shown above are self explanatory. For meanings of the DSS1Cause,
1TR6Cause, and LocalCause fields, refer to Appendix C.

For descriptions regarding the meanings of individual fields in the isdnCallHistory-
Table see the BRICK MIB Reference contained on the Companion CD.

mybrick: > isdnCallHistoryTable
inx StkNumber(*ro) Type(*ro) Time(ro)

Duration(ro) IsdnIfIndex(ro) Channel(ro)
DspItem(ro) RemoteNumber(ro) RemoteSubaddress(ro)
LocalNumber(ro) LocalSubaddress(ro) ServiceIndicator(ro)
AddInfo(ro) BC(ro) LLC(ro)
HLC(ro) Charge(ro) DSS1Cause(ro)
1TR6Cause(ro) LocalCause(ro) ChargeInfo(ro)
Screening(ro) Info(ro)

 00 0 incoming 08/19/97 13:28:25
39 2000 2
eaz3
“3” data_transfer
0 88:90

0 0x9f
0x80 0
undefined “isdnlogind”

 01 0 outgoing i08/19/97 13:28:25
39 2000 1
login “143”

data_transfer
0 88:90

0 0x9f
0x80 0
undefined “isdnlogin”

mybrick: isdnCallHistoryTable>

Note: The number of entries in the isdnCallHistoryTable is lim-
ited to the value set in the isdnHistoryMaxEntries object.
By default information regarding the last 20 ISDN calls
are saved with older entries being dismissed as newer
entries are added.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

96

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Logging ISDN Accounting Information to LogHosts

ISDN accounting messages can be forwarded to remote hosts for storage or post
processing. This is done by configuring the remote host as a LogHost on the BRICK in
the biboAdmLogHostTable. LogHosts may include PCs running DIME Tools Syslog
Daemon program (see: BRICKware for Windows) or a UNIX workstation where the
syslog daemon is appropriately configured (see: Setting Up a syslog Daemon).

To configure the LogHost on the BRICK refer to the section on: Logging with Remote
LogHosts.

IP Accounting Information
IP accounting messages contain information about a specific IP session routed over the
BRICK. Recall that IP accounting messages are only generated for IP sessions that are
routed over interfaces for which IP accounting has been enabled in the ipExtIfTable.

Tracking Active IP Sessions

Statistics for active IP sessions routed over BRICK interfaces (again, interfaces for
which IP accounting is enabled) can be seen in the ipSessionTable. Once an IP session
closes this entry is removed and a IP accounting message is generated and saved to the
biboAdmSyslogTable.

The SNMP session shown below displays the respective table entries that might be
created for an FTP session between a host on the BRICK’s LAN (ifIndex = 1000 IP Ad-
dress = 192.168.2.2) and a remote host via a dial-up link (ifIndex = 10002 IP Address =
10.5.5.5).

Note:
When configuring LogHosts for accounting information
ALL accounting information (both ISDN and IP
accounting messages) will be sent to this host.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

97

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Once the session closes an entry is made to the biboAdmSyslogTable and if applica-
ble, a message is sent to the configured LogHost(s). When displaying the biboAdmSys-
logTable only the first few characters of the message text is diaplayed. To see the full
text enter the message command.

Logging IP Session Information to LogHosts

IP accounting messages can be forwarded to remote hosts configured to accept syslog
messages. Such hosts may include PCs running the included DIME Tools Syslog Daemon
program (see: BRICKware for Windows) or a UNIX workstation where the syslog dae-
mon is appropriately configured (see: Setting Up a syslog Daemon).

mybrick: > ipSessionTable

inx SrcAddr(*ro) SrcPort(*ro) DstAddr(*ro) DstPort(*ro)
OutPkts(ro) OutOctets(ro) InPkts(ro) InOctets(ro)
Protocol(*ro) Age(ro) Idle(ro) SrcIfIndex(ro)
DstIfIndex(ro)

 00 192.168.2.2 1224 10.5.5.5 21
45 1860 28 1570
tcp 0 00:00:10.00 0 00:00:00.00 1000
10002

mybrick: ipSessionTable>

mybrick: > biboAdmSyslogTable

inx TimeStamp(*ro) Level(*ro) Message(ro) Subject(ro)

00 01/01/70 0:00:09 err “TIMED: no respon inet
01 08/19/97 19:07:35 info “INET: 19.08.1997 acct

mybrick: ipSessionTable>message

00 “TIMED: no response”
01 “INET: 19.08.1997 18:55:25 709 6 192.168.2.2:1224/1000 -> 10.5.5.5:21/10002 61 2506 41
2380”

mybrick: ipSessionTable>
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

98

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

To configure the LogHost on the BRICK refer to the section on: Logging with Remote
LogHosts.

Logging with Remote LogHosts
LogHosts are configured on the BRICK in the biboAdmLogHostTable. This table con-
sists of four fields that define the following attributes for the LogHost.

Addr The IP address of the host to send the syslog message to.
Level The level of syslog messages to send to this host. This is a

minimum level; setting this object to level X sends all mes-
sages with levels ≥ X (See: System Logging on the BRICK).

Facility This is the syslog facility on the LogHost the BRICK sends
the message to. This is only required for UNIX LogHosts.

Type The type (either system , accounting , or all) of syslog
messages to send to this host. System and accounting
messages are described here, all include both types.

LogHosts configured on the BRICK must be configured to accept messages via the
syslog protocol. For PCs the DIME Tools Syslog Daemon can be used. For UNIX work-
stations, the syslogd must be be properly configured and running (see: Setting Up a
syslog Daemon).

The BRICK always uses the UDP port 514 for sending syslog messages.
A simple LogHost setup involving one one remote host is shown below. In this ex-

ample accounting messages, both ISDN and IP, and system messages with levels ≥ err
are sent to this host.

Note:
When configuring LogHosts on the BRICK for account-
ing information ALL accounting information (both ISDN
and IP accounting messages) will be sent to this host.

Note:
Because of cost considerations it is generally not a
good idea to configure LogHosts that are only accessi-
ble via ISDN DialUp links.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

99

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Since we want to keep our accounting and system warning messages in separate
files on the remote LogHost we need to make two entries in the
biboAdmLogHostTable.

Assuming our UNIX LogHost was configured to accept these syslog messages via
the local0 and local1 facilities and save the information to the /var/adm/my-
brick.acct and /var/adm/mybrick.system files respectively, we might see the
following information accumultate there.

The initial date and time strings at the beginning of the message are set by the local
host (or PC). They reflect the date and time the message was received and may not cor-
respond to the actual time of the system event.

mybrick: > biboAdmLogHostTable

inx Addr(*rw) Level(-rw) Facility(rw) Type(rw)

mybrick: biboAdmLogHostTable> Addr=192.168.5.99 Level=info Facility=local0 Type=acct
mybrick: biboAdmLogHostTable> Addr=192.168.5.99 Level=err Facility=local1 Type=system

mybrick: biboAdmLogHostTable> biboAdmLogHostTable

inx Addr(*rw) Level(-rw) Facility(rw) Type(rw)

00 192.168.5.99 info local0 acct
01 192.168.5.99 err local1 system
mybrick: biboAdmLogHostTable>

Note: Accounting messages are generated at the Level=info.
If you configure a log host for accounting me ssages
(Type=acct) and specify a level higher than info no
messages will be sent to the LogHost.

Aug 14 11:19:26 mybrick ACCT: INET: 14.08.1997 11:18:46 1 6

/var/adm/mybrick.acct

Aug 14 11:23:54 mybrick ISDN: isdnStkNumber 0 q931:

/var/adm/mybrick.system

10.2.2.6:2855/4000->10.4.5.8:25/10002 30 16 1000
Aug 14 11:24:48 mybrick ACCT: ISDN: 14.08.1997,11:24:08,11:24:22,

information element missing

12, 1185, 2715,37,37,1 Units,O,2,7834,7/0,9F,0
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

100

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Remote SNMP Administration

Object Identifiers (OIDs)

All OIDs of all MIB variables have the same structural form.

.1.3.6.x.x.x.x .y.y.y.y .i

.1.3.6.x.x.x.x : is the OID of the variable according to the MIB description file

.y.y.y.y : is the specific OID part for the unambiguous identification of a
variable in several rows of a dynamic table (non-existent in static
tables). It consists of the contents of all index variables (*variables),
which are mostly unambiguous by row.

For tables where this is not the case (e.g. ipRouteTable), the
following index is required for purposes of clarity.

.i : is a continuing index (always 0 for static tables) not the same as the
´inx´on the Command Line.

The Raw-Mode (numerical form) command x toggles Raw-Mode on and off. After
entering the command, the shell reports which mode it is entering. By default Raw-
Mode is off from the SNMP shell.

Traps

Standard and Enterprise-Specific Traps

To report asynchronous events to a management station (trap host) the BRICK can
send traps. Asynchronous events means e.g. the change of a MIB variable, which may
require attention. Traps are differentiated into Standard Traps and Enterprise-Specific
Traps.

Standard Traps report the events “coldStart, warmStart, linkDown, linkUp and au-
thentificationFailure” and are sent by default when a trap host is defined or trap broad-
casting is turned on.

coldStart Reboot of the BRICK
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

101

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Enterprise-Specific Traps can be defined by the user. To define a trap object the user
must assign a MIB variable (object identifier in dot format or string) to the variable bi-
boATrpObj in the biboAdmUserTrapTable.

Only certain variables, which could contain important changes, can be trapped.
Counters can not be trapped.

Traps can either be broadcasted to the local LAN or be sent to a defined trap host.
Trap hosts can be configured in the biboAdmTrapHostTable.

Broadcasting traps into the LAN can be configured with the variable biboAdmTrap-
BrdCast in the adminTable, where also the TrapPort (default: 162) and the TrapCom-
munity (default: “snmp-Trap”) can be adjusted.
The following two examples explain the structure of trap packets, which are ASN1
coded:
Standard Trap:

warmStart Reboot of the BRICK

linkDown Disconnection of a link. Change of the variable
ifOperStatus to the value down or dormant (hard-
ware and software interfaces).

linkUp Establishment of a connection. Change of the var-
iable ifOperStatus to the value up (hardware and
software interfaces).

authenticationFailure An SNMP authentication failure, i.e. SNMP request
with wrong password.

Trap Item Meaning

"snmp-Trap" trap community

.1.3.6.1.4.1.272 enterprise OID (=.iso.org.dod.internet.pri-
vate.enterprise.bintec)

192.1.2.3 IP address

linkUp trap type (coldStart, warmStart, linkDown,
linkUp, authentificationFailure)
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

102

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Enterprise-Specific Trap:

Web Based Monitoring
The BRICK’s operational state can be quickly polled via an HTTP server that has been
implemented on the BRICK. This server provides a status page which can be accessed
from any WWW browser that supports HTML tables and the HTML 2.0 standard (i.e.,

0 no meaning

0:33:58 time stamp

"BIANCA/BRICK-XL" system description

"brick" system name

ifoperstatus.10001.4 = up interface state

Trap Item Meaning

"snmp-Trap" trap community

.1.3.6.1.4.1.272 enterprise OID (=.iso.org.dod.inter-
net.private.enterprise.bintec)

192.1.2.3 IP address

enterprise specific trap type

row identifier (integer) table number (=table number * 1000 +
row number)

0:33:58 time stamp

"BIANCA/BRICK-XL" system description

"brick" system name

isdnchState.2000.1.1 = connected trap variable

Trap Item Meaning
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

103

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Netscape’s Mozilla or Microsoft Internet Explorer). The status page displays general
system information, which licenses are installed, and current activity for each LAN or
WAN interface.

Simply point a WWW browser at the BRICK using the following URL. The http port
is only required if it was changed from its default value of 80 .

http:// <System Name><: HTTP Port Number>
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

104

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

SNMP-Table Browsing

The contents of the BRICK’s SNMP tables can be browsed via HTTP browsers using
the “system tables” link from the main Status-Page. Initially this link displays a list of
all system tables found on the BRICK. From there, individual system tables can be se-
lected; the BRICK creates the appropriate HTML pages on-the-fly showing the current
contents of the respecitive variables.

The CGI (Common Gateway Interface) programs htmlshow and snmpquery, are
also available on the BRICK and can be used to selectively display the values of one or
more SNMP table objects.

CGI Program: htmlshow

The contents of one or more BRICK SNMP variables can be selectively displayed to
any WWW browser using the htmlshow program.

The basic syntax for using htmlshow is as as follows. Possible options are de-
scribed below.

htmlshow Options:

oid= snmp_oid
This option is mandatory and specifies an SNMP object identifier (OID) to display.
snmp_oid is not case-sensitive. An OID may be specified in one of the following
ways:

Note: Only the “http” user may access the htmlshow program.
The BRICK authenticates htmlshow queries once per
browser session by prompting the requestor for the http
user’s password. This value is definedin the
biboAdmHttpPassword field of bintecsec.

http:// <SysName>/htmlshow? <option=val>&<option=val>

separates

separates CGI program
 name from parameters

parameter strings
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

105

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

1.A symbolic object identifier name, i.e.
.iso.org.dod.internet.mgmt.mib-2.interfaces.ifEntry.ifTable

2.An numerical object identifier, i.e.
.1.3.6.1.2.1.2.2.1

3.A unique MIB-2 or BinTec MIB table or variable name, i.e.
iftable

Object identifiers starting with a period (“.”) are taken to be
absolute object identifiers; otherwise a relative object identifier is
assumed. Relative object identifiers are searched for relative to MIB-2,
i.e. .iso.org.dod.internet.mgmt.mib-2 or .1.3.6.1.2.1.

refreshtime= interval
If interval is specified the display is updated every interval seconds. Entering 0 in the
resulting text field disables automatic refresh updates.

orientation= mode
Defines the orientation of the output. “portrait” (default) or “landscape” mode may
be specified.

If more than one object identifier is specified, the resulting tables or columns are
printed side-by-side. The following URL was used to display the selected system
variables shown on the following page:

http://mybrick/htmlshow?oid=isdnChIsdnIfIndex&
oid=isdnChState&oid=isdnChReceivedOctets&
oid=isdnChTransmitOctets&oid=isdnChReceivedErrors&
refreshtime=10

TIP: References to HTML pages generated by the BRICK’s
htmlshow program can be “bookmarked” for future reference. This will
spare you the time of having to type long htmlshow queries (with the
exception of the http password, all htmlshow options are saved in the
bookmark)
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

106

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

107

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

CGI Program: snmpquery

The contents of one or more selective SNMP object can also be polled from the
BRICK using the snmpquery program. This program is similar to the htmlshow pro-
gram but it does not format its output as HTML tables. (The output can still be read
in any browser window). snmpquery is primarily intended for developers writing
applications needing to access the BRICK’s SNMP tables via the network.

The syntax for snmpquery is shown below. Exactly one oid=<value> parameter
must be present within each HTML request. .

Specifying Object Identifiers:

oid= value
An SNMP OID (object identifier) can be specified using an absolute name or a short-
name (the same names available from the SNMP shell). Values beginning with a dot,
“.”, are assumed to be absolute names. Values not beginning with a dot are assumed
to be relative to MIB-2.

Additionally, objects can be specified in numerical or symbolic format (alphabet-
ical characters uppercase, lowercase, or mixed). For example, any of the following
oid=<value> parameters shown below could be used to retrieve the contents of the
tcp static table.

oid=.iso.org.dod.internet.mgmt.mib-2.tcp
(absolute name – symbolic format)

oid=.1.3.6.1.2.1.6
(absolute name – numeric format)

oid=tcp
(relative name – symbolic format)

oid=6
(relative name – numeric format)

snmpquery Output

http:// <SysName>/snmpquery?oid= <value>

separates CGI program
 name from parameter
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

108

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The output of the snmpquery program consists of a header line followed by the con-
tents of each requested SNMP object.

The header line consists of a numeric HTTP result code and a status message. The
following result codes are currently defined.

These codes are described in detail in RFC 1945 (HTTP 1.0).
SNMP variable information is then displayed. Each line consists of three columns:

1.The object identifier (absolute name – numeric format) enclosed in quotation
marks.

2.The SNMP variable type.
3.The variable’s current value. (DisplayString objects are also displayed in

quotation marks).

A HTML request for the system table would be displayed as follows:

200 OK
 “.1.3.6.1.2.1.1.1.0” DisplayString “BIANCA/BRICK-XM”
“.1.3.6.1.2.1.1.2.0” ObjectIdentifier
“.1.3.6.1.2.1.1.3.0” TimeTicks 23924186
“.1.3.6.1.2.1.1.4.0” DisplayString “J.D.Smith (smith@sample.com)”
“.1.3.6.1.2.1.1.5.0” DisplayString “mybrick”
“.1.3.6.1.2.1.1.6.0” DisplayString “John’s desktop”
“.1.3.6.1.2.1.1.7.0” Integer 12

User Accounts
You can log into the BRICK using one of three different user IDs.

Admin Read Write

 Result Code Status Message

200 OK

400 Bad Request

401 Unauthorized

404 Not Found

500 Internal Server Error
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

109

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Passwords

For each user a separate password should be defined in the bintecsec table. Password
information should be controlled. Default passwords (those set when your BRICK ar-
rives) are shown below.

The password (value of the respective Community object in bintecsec) defines the
SNMP community name associated with all SNMP commands performed from the
SNMP shell session.

User Rights

Each of the bintecsec users have a different level of access to the BRICK’s configuration
information. As the system administrator you will almost alway need to login as the
admin user. The write and read users can be used to allow different levels of access to
your system.

Object Name USER ID Password

biboAdmAdminCommunity admin bintec

biboAdmReadCommunity read public

biboAdmWriteCommunity write public

USER
Permission

System Table
Editing

ExternalSystem
Commands

bintecsec
Access

Setup Tool
Access

admin Read-Write Execute Read-Write Execute

write Read-Write — — —

read Read only — — —
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

110

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Other Passwords

HTTP Password

In addition to the SNMP community user passwords the bintecsec table contains the
HTTP password for access to the BRICK’s main Status page.

By default the biboAdmHttpPassword object is set to bintec .

RADIUS Secret

The RADIUS secret used by the BRICK when contacting a configured RADIUS server
(biboAdmRadiusServer) is also contained in bintecsec.

By default the biboAdmRadiusSecret is left empty.

System Software Updates
The BRICK’s system software is stored in flash RAM meaning that it can be easily up-
dated allowing you to take advantage of newly developed/enhanced features not
available when you purchased your BRICK.

BRICK system software updates are available via HTTP and FTP and are provided
free of charge. You can always find the most recent software image for your BRICK via
our WWW server at: http://www.bintec.de For sites limited to character based connec-
tions software images are also available via our FTP site at: ftp.bintec.de.

What’s Needed
To update the BRICK’s system software you will need the following:

• A BRICK system software image,
• A direct serial port connection between your BRICK and a PC where the soft-

ware image is stored, –OR–
• An accessible (via a LAN or WAN interface) TFTP Server where the software

image can be retieved from.

Note The default HTTP password should be changed since it
allows unrestricted read-access to all SNMP system
tables on the BRICK via HTTP.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

111

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Performing a System Software Update

Software Update via TFTP

1. Retrieve the system software image you wish to install using one of the URLs
(FTP/HTTP) mentioned above.

2. Place the software image in the TFTP server’s TFTP directory.
Normally1, this is : C:\BRICK for PCs running the DIME Tools TFTP Server ap-
plication or /tftpboot on UNIX workstations.

3. For UNIX TFTP servers ensure that the image is world-readable.
4. Log into your BRICK and issue the following command using the IP Address

of your TFTP server and the image’s filename.

update IP_Address filename
5. Enter y (yes) when asked: perform update (y or n) ?
6. Enter y (yes) when asked: Reboot now (y or n) ?

Software Update via XMODEM

1. Retrieve the system software image you wish to install using one of the URLs
(FTP/HTTP) mentioned above.

2. Place the software image on the PC your BRICK’s serial port is connected to.
Preferably BRICKware for Windows should also be installed on this system.

3. Start the BRICK at COM terminal program for the serial port the BRICK is at-
tached to.

4. Now power up the BRICK (or reboot the system using the cmd=reboot com-
mand if it’s already running).

5. At the BOOTmonitor prompt press the spacebar to activate the BOOTmonitor.
6. Select menu item (3) and simply answer the questions as prompted on the

screen. You’ll need to specify the location of the software image and begin the
file transfer.

7. Once transferred you’re given the option to update flash or write the image to
memory. Select u update and then b boot the system.

1. The shown values are the defaults for most UNIX or PC systems, check your local configuration

files to verify this location.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

112

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

BOOT Options on the BRICK
When the BRICK boots up, it performs several self tests. When the tests are finished the
BRICK optionally broadcasts BootP Requests via the first LAN interface if the IP ad-
dress (for this interface is not configured).

The BOOTmonitor
After the tests has been successfully completed, the BRICK switches into BOOTmoni-
tor mode and displays a prompt to the screen.

Note that the BOOTmonitor is only displayed on terminals connected. directly to
the BRICK’s serial port. You will not see the BOTmonitor if connected via a LAN or
WAN connection.

With the BOOTmonitor, you can easily perform firmware upgrades, test a new soft-
ware release, or remove configuration files on your system.

To activate the BOOTmonitor the spacebar must be pressed within the first 4 sec-
onds, otherwise the system continues with its normal boot procedure and switches into
normal operation mode. Pressing the spacebar activates the BOOTmonitor as shown
below. As long as the BOOTmonitor is active (or awaiting keyboard input), all front
panel LEDs will remain on.

The commands from the BOOTmonitor menu are self guiding, informing/prompt-
ing you for confirmation along the way.

BIANCA/BRICK-XS (Hardware Release 1.2, Firmware Release 1.7) ok

Press <sp> for boot monitor or any other key to boot system

BIANCA/BRICK-XS Bootmonitor (V. 4.6 Rev. 1 from Sep 26 1997)
Copyright (c) 1996 by BinTec Communications AG

(1) Boot System
(2) Software Update via TFTP
(3) Software Update via XMODEM
(4) Delete Configuration
(5) Default Bootmonitor Parameters

Your Choice>
Los Ge
 Getting Startedht’s User’s Guide BRICKware Extended Feature

113

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

(1) Boot System

Select menu item (1) to load the compressed boot image from Flash into memory. This
is the normal procedure performed at boot time.

(2) Software Update via TFTP

To upgrade the BRICK’s system software via a TFTP server select option (2). You will
be prompted for the following pieces of information:

• IP Address of an accessible TFTP Server (where the image is stored).
• IP Address of BRICK
• The file name of the software image to retrieve.

Once you‘ve entered the information and the image has been successfully retrieved
you will be asked to confirm the update. Here, you have two options:

(1.)Update Flash ROM
(2.)Write image to RAM and boot it.

(3) Software Update via XMODEM

You can upgrade system software via XMODEM over a serial connection with the
BRICK by selecting this option. You will be prompted to verify the baud rate to use
over the serial connection. The time required to transfer the file will depend on the size
of the file and baud rate you’ve chosen.

As when performing an update via TFTP you will then be prompted to confirm the
update as follows:

(1.)Update Flash ROM
(2.)Write image to RAM and boot it.

Note Note that option (2) only loads the image into RAM and
does not remove your existing boot image stored in
Flash. With this option, you can test the new software
release without removing your existing boot image. If
the BRICK is turned off, your old software release will be
used upon a subsequent reboot.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

114

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

(4) Delete Configuration

Select option (4) to return the BRICK to its factory settings, as it arrived. All configura-
tion files and BOOTmonitor parameters (see below) are removed.

(5) Default BOOTmonitor Parameters

Select option (5) from the menu to change the default settings used by the BOOTmon-
itor. These settings include:

• The baud rate used for serial connections.
• The LAN interface to use for TFTP file transfers.
• The Local IP address for the BRICK.
• The IP address for the TFTP server.
• The system software image file to download.
• Automatic boot file retrieval over TFTP

The IP address settings defined here are used strictly for the BOOTmonitor and are
not used for any IP routing functions on the BRICK.

Automatic booting over TFTP

The BRICK can load its boot file via TFTP automatically at boot time by defining the
appropriate settings in menu item (5). After setting the local and remote IP addresses,
and the name of the system software image file to retrieve answer “yes” when asked
the question:

Do you want to boot automatically from the TFTP server (y or n):

Note If you change the baud rate, be sure that your terminal
supports this rate, otherwise you may not be able to
connect to the BRICK. The default setting is set at 9600
baud, which is supported by practically all terminals.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

115

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Booting via BootP
The BRICK’s initial configuration information can be loaded remotely using a BootP
server on the local network. This initial information normally includes the BRICK’s IP
address and the name of its configuration file but may include other information. The
server that provides this information may be a UNIX workstation running a bootpd
process (see: Setting Up a BootP Server) or a PC running the included DIME Tools BootP
Server program (see: BRICKware for Windows).

During every system startup, the BRICK starts a BootP client process. Until an IP ad-
dress is assigned, this process broadcasts standard BootP REQUEST packets every five
seconds over the local network. Depending on how your BootP server is configured,
the BRICK can also load it’s configuration file remotely using TFTP. As soon as the IP
address is received, the bootpd (client) process is ended.

Various information can be transmitted to the BRICK using a BootP server. The
BRICK BootP client process accepts the following BootP information (or TAGs) in ac-
cordance with the following Request For Comments (RFCs).

TAG RFC
Subnet Mask 1 1048
TimeServer 4 1048
TimeOffset 2 1048
IP Address - 951
Host Name1 2 1048
Domain Name 15 1395
Domain Name Server 6 1048
Log Server 7 1048
TFTP Bootfile - 951

Note If the BootP server sends a hostname, domain name, or
name server information, the BRICK will accept this
information (by setting the respective variables) only if
this information hasn’t already been set.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

116

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

BootP Relay Agent
The BRICK can also serve as a BootP Relay Agent for other hosts on the LAN. This is
useful for stations that need to retrieve boot information remotely from a BootP server,
but aren’t on the same physical IP network as the server. If the BRICK is on the same
IP network as the station, it receives the stations BootP requests, and forwards them to
server defined in biboAdmBootpRelayServer. See the section BootP Relay Agent Settings
under BOOTP and DHCP in Chapter 7.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

117

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Other System Administration Tasks

Setting Up a BootP Server
To configure a BootP server on a UNIX workstation follow these instructions. The in-
formation shown below briefly describes setting up BootP to provide the BRICK with
basic IP settings (IP address, netmask, and name server’s address). Refer to your local
documentation for detailed description for your specific platform.

1. Edit (or create) the /etc/bootptab file to include the following lines:

brick:\
:ht= <the Hardware Type is usually “ether”>:\
:ha= <the BRICK’s Hardware (or MAC) Address>:\
:ip= <the IP Address to use>:\
:sm= <the Subnet Mask to use>:\
:ds= <the Domain Name Server’s IP Address>:

2. You can start the bootpd process from the command line using:

On Solaris 2.5 and SunOS Systems:
/etc/bootpd -s

On Linux Systems:
/usr/sbin/bootpd -s

3. You may want to start the bootp daemon from the Internet Services daemon by
adding the appropriate line to the /etc/inetd.conf file:

On Solaris 2.5 and SunOS Systems:
bootps dgram udp wait root /etc/bootpd bootpd

On Linux Systems:
bootps dgram udp wait root /usr/sbin/bootpd \
bootpd bootptab

Note The very first tag identifies the hostname this bootptab
entry applies to. By default this is “brick” on systems
where sysName hasn’t been configured. If the system
name is already configured specify that value here
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

118

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

4. If you’ve added the bootps entry to /etc/inetd.conf as in step 3 you’ll have to
restart the inetd process for your changes to
become effective.

On Solaris 2.5 Systems,
ps -ef |grep inetd
kill -1 <pid>

On SunOS and Linux Systems,
ps -ax |grep inetd
kill -1 <pid>

where <pid> is the process id of your running inetd process.

Setting up a TFTP Server
The TFTP (Trivial File Transfer Protocol) allows configuration files to be transferred to/
from remote machines. The BRICK implements TFTP allowing you to send and receive
files to/from hosts where a TFTP server is running. The TFTP server may be a UNIX
host or a PC running DIME Tools’ TFTP Server application (see: BRICKware for Win-
dows). A brief description of setting up a TFTP server on a UNIX workstation is cov-
ered below.

1. Allow the TFTP daemon to start. This is normally done by inserting one of the
lines shown below in your /etc/inetd.conf file. Normally the correct entry is al-
ready present in the file and all you have to do is uncomment it. Refer to your
local documentation inetd and tftpd) for more specific instructions.

On Solaris 2.5:
tftp dgram udp wait root /usr/sbin/in.tftpd \
in.tftpd -s /tftpboot

On SunOS Systems:
tftp dgram udp wait root /usr/etc/in.tftpd \
in.tftpd -s /tftpbooot

On Linux Systems:
tftp dgram udp wait nobody /usr/sbin/tcpd \
in.tftpd /tftpboot
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

119

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

2. Create the TFTP directory. You must separately create the TFTP directory (last
field of the TFTP entry in inetd.conf shown above) and make it world readable
using:

mkdir /tftpboot
chmod 777 /tftpboot

3. Restart the inetd process. After you have added the above line to your local /
etc/inetd.conf file you must restart the inetd process. You must determine the
process ID of inet daemon and restart the process. You can use the standard ps
and kill commands as follows:

On Solaris 2.5 Systems
ps -ef |grep inetd
kill -1 <pid>

On SunOS or Linux Systems:
ps -ax |grep inetd
kill -1 <pid>

where <pid> is the process id of your running inetd process.

Remember that before you send TFTP files from the BRICK to your (UNIX) TFTP
server you must create the destination file in the TFTP directory and it must be world
readable. This could done using the commands:

touch /tftpboot/brick.cf
chmod 777 /tftpboot/brick.cf

Special Note:

TFTP
Servers

Some UNIX TFTP server implementations (in particular
older BSD based systems) do not reset the file length to
0 bytes prior to writing the TFTP file in response to a TFTP
Write-Request; i.e., cmd=put or cmd=state is used.

This results in leftover data at the end of the TFTP file
after the new data has been written. These files can not
be processed by the BRICK.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

120

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Setting Up a syslog Daemon
Log hosts configured on the BRICK can be a PC running DIME Tools Syslog Daemon pro-
gram or a UNIX workstation running a syslog daemon. This section briefly explains
setting up an /etc/syslog.conf file for a UNIX worstation.

The exact format of this configuration file may be different on your UNIX platform,
see your local documentation for more specific information.

1. As root edit the /etc/syslog.conf file to include the appropriate logging
entry (see below). A typical logging entry that would save messages to a pre-
defined file might look like this.

#facility.level action
local0.info /var/adm/brick.log

2. For actions that specify a log file, make sure you create the file and it has read-
write permission for the syslog daemon.

3. Then as root stop and restart the syslog daemon.

On Solaris Systems
/etc/init.d/syslog start
/etc/init.d/syslog stop

On SunOS Systems
kill -1 ‘cat /etc/syslog.pid‘

On Linux Systems:
kill -1 ‘cat /var/run/syslogd.pid‘

4. If you haven’s already done so configure this host as a log host on the BRICK.
(See:).

Logging Entries in /etc/syslog.conf

Logging entries in this file consists of two TAB-sparated fields referred to as:

SELECTOR and ACTION
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

121

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

The SELECTOR field consists of a facility.level pair separated by a dot. (Actually,
selector can contain multiple facility.level pairs separated by semi-colons, however, for
the sake of simplicity we’ll asusme only one pair is being used.). The facility part iden-
tifies a system faciltiy that a system message is received over; a sort of incoming port
number if you will. The level part identifies the severity associated with the message.

The ACTION field identifes the action to take upon receiving a system message via
this facility. Actions might include saving the tsystem message to a file, writing to a
specific user (if currently logged in), or forwarding the message to the syslogd of an-
other host.

The facility and level of an incoming system message (i.e., sent from the BRICK)
must match both facility and level before the syslog daemon performs the action. The
values that may be used in these field when configuring logging entries for the BRICK
are as follows:

Note: On most systems the facility field must match the facility
of the transmitting host or be “* ”.
On most systems a level entry or X will match All mes-
sages (arriving on the respective facility) with levels ≥ X.
Some systems (Linux) support additional extensions in
the level field to match level subsets.

#facility. level <TAB> action

#/etc/syslog.conf
#SELECTOR ACTION

local0
local1
local2
local3
local4
local5
local6
local7

emerg
alert
crit
err
warning
notice
info
debug

@<server>
<username>
*
/ <filename>

(high)

(low)

(send to server)
(write user)
(write all users)
(write to file)
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

122

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

Setting up a Time Server
The BRICK acts as a Time Client and needs a Time Server to retrieve the time from.

There are various possibilities: time can be retrieved from ISDN; the Time Server pro-
tocol via “Time Service UDP” is available on the Windows software package, BRICK-
ware; the time protocols “Time Service UDP/TCP are usually available on all Unix
hosts; an XNTP Server package is freely available for PC/Unix servers, enabling the
SNTP protocol via UDP.

Depending on the kind of server used, the BRICK can retrieve the current time using
any of the following four methods:

• Time Service (RFC 868) via UDP

• Time Service (RFC 868) via TCP

• Simple Network Time Protocol (SNTP) (RFC 1769)
Via individual Time Requests or Broadcasts: in the latter case, no explicit time
requests are necessary, the Time Server automatically sends network broad-
casts to all its time clients at regular intervals, thus saving packet traffic.

• ISDN D-channel (stack 0 only)

The following relevant SNMP variables are configured on the BRICK in the
Admin system table:

biboAdmTimeServer Specifies the IP-address of the Time Server in dot-format

biboAdmTimeOffset Specifies the time in seconds to add/subtract to the re-
trieved time. Values between -24 and +24 are assumed to be hours and are appropri-
ately converted to seconds. Note that when time is retrieved from ISDN the offset
must be set to zero.

biboAdmTimeProtocol Specifies the protocol to use to retrieve current time. Re-
garding the four methods noted above, the following protocols are possible.

• time_udp: Time Service (RFC 868) via UDP
• time_tcp: Time Service (RFC 868) via TCP
• time_sntp: SNTP (RFC 1769) via UDP
• isdn: ISDN D-Channel (stack 0 only)
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

123

w
w

w.
bi

nt
ec

.d
e

SN
M

P She
ll

ISD
N

Sys-A
d

m
in

Fe
a

ture
s

Intro
d

uc
tio

n

• none: Disable time retrieval altogether

biboAdmTimeUpdate Specifies the interval in seconds at which current time
should be updated/retrieved. As with Time Offset values between -24 and +24 are
assumed to be hours and converted to seconds. For Protocol=time_udp, time_tcp,
or time_sntp (if not in Broadcast mode) new requests are sent every biboAdmTime-
Update seconds. When isdn is used, the current time is retrieved from the next ISDN
connection established after biboAdmTimeUpdate seconds.
Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

124

6

Configuring the BRICK as a Bridge

What’s Covered?

■ Background on Bridging

■ Bridging with the BRICK
• Bridging Features

Learning Bridges
The Spanning Tree Algorithm
Bridge Filtering
BIANCA/BRICK Software Reference
■ Configuring Bridging on the BRICK
• Enabling Bridging
• Bridge Initialization

■ Using the BRICK as a Bridge
• Bridging between LANs
• Bridging over WAN Links
• Controlling Bridging Activity Us-

ing Filters
Chapter Six
1CONFIGURING THE BRICK

AS A BRIDGE
125

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Background on Bridging
Bridging is one of the easiest ways to connect network segments. A bridge is attached
to two or more networks and simply forwards frames between them. The contents of
these frames are of no concern to the bridge; frames are forwarded unchanged.

In transparent bridging each bridge makes its own routing decisions and is therefore
‘transparent’ to the communicating hosts on the end networks. Additionally, a trans-
parent bridge configures itself (in terms of routing information) after coming into serv-
ice.

Because a bridge forwards complete frames between connected networks many dif-
ferent protocols can coexist on either network, the messages are forwarded unchanged
(protocol information is passed as raw data in the ethernet frames). Bridges are used
when multiple-protocol packets need to be shared among networks.

Network 1

Host1

Network

Data Link

Physical
Layer

Layer

Layer

Host2

Network

Data Link

Physical
Layer

Layer

Layerpackets

frames

Network 1

Bridge
126

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Bridging with the BRICK

Bridging Features
As with most bridges you simply have to connect the BRICK to two or more network
segments and turn bridging on. However, several bridging features are available on
the BRICK that can be used to overcome some of the limitations inherent in bridging.

Learning Bridges

The BRICK is a learning bridge. Using the source and destination hardware addresses
the BRICK decides which physical interface to forward each packet it receives. This de-
cision is made by consulting its forwarding database, the dot1dTpFdbTable. Each entry
in this table has the following fields:

Address Contains MAC (Medium access control) addresses.
DestPortIfIndex The respective BRICK interface number to use when

bridging frames for this address.
Status How this information was learned.
Age How old this information is (see below).

When the BRICK first comes into service, its forwarding database is empty. Then,
when a frame is received, the source address of the frame and the interface it was re-
ceived on are entered into the database. Since the destination interface is not yet
known, a copy of the frame is broadcasted on each of the BRICK’s interfaces. As frames
are propagated, other learning bridges perform the same procedure. This allows other
bridges on the network to rapidly build up their forwarding database.

To ensure that the dot1dTpFdbTable is current, and doesn’t get too large, each entry
has an Age associated with it. Whenever a frame is received from that address this field
is reset. If no frame arrives before the Aging Timer expires, the entry is removed from
the database. The BRICK uses the dot1dTpAgingTime variable which is set to 300 sec-
onds by default.
127

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
A simple bridge example is shown below.

The Spanning Tree Algorithm

The simple learning procedure explained above is only sufficient for simple networks;
i.e. multiple paths between two segments can not exist since the learning process
would constantly cause entries to be overwritten. In such cases the BRICK uses an ad-
ditional mechanism, known as the Spanning Tree Algorithm that compensates for net-
work topologies with multiple paths between stations.

The spanning tree algorithm defines special frames (messages) known as bridge
protocol units (BPDU) which are exchanged among all bridges on a network. Each
bridge is uniquely identified by an 8 byte Bridge ID. On the BRICK this ID is deter-
mined using the dot1dStpPriority and dot1dBaseBridgeAddress objects as follows:

Also one bridge must be singled out as the root bridge; this is the bridge with the
smallest identifier and the highest priority value. After the root bridge has been cho-
sen, each bridge determines which port offers the lowest cost path to the root (its root
port). The root bridge’s address is stored in the dot1dStpRootPort object. Configura-

Station
Address

Port
Number

1
2
3
4
5
6

1
1
2
2
2
2

⊗⊗⊗ ⊗

Station
Address

Port
Number

1
2
3
4
5
6

1
1
1
1
2
2

⊗⊗

Bridge 1

Port
1

Port
2

Bridge 2

Port
1

Port
2

➀ ➁ ➂ ➃ ➄ ➅

2 bytes 6 bytes

dot1dStpPriority dot1dBaseBridgeAddress
128

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
tion BPDUs are transmitted at regular intervals, defined by the Hello Time
(dot1dStpHelloTime), to ensure that the root bridge information is current.

Bridge Filtering

Bridge Filtering allows you to control the amount of traffic that may be passed over the
BRICK’s interfaces. This is an important tool when bridging over ISDN links since eve-
ry WAN connection costs money. Bridge Filters follow the same concept used with Ac-
cess Lists in IP Routing consisting of Allow and Deny Tables as follows.

dot1dStaticAllowTable Defines packets that may be bridged.
dot1dStaticDenyTable Defines packets that may NOT be bridged.

Each table consists of the following fields:

SrcIfIndex The BRICK interface the frame was received on.
DstIfIndex The BRICK interface the frame would be forwarded on.
ByteOffset The number of bytes to skip (starting from the beginning)

before making a comparison.
Mask Which bytes are compared.
Value The actual value to look for in the packet.
Status The status of this entry.
Age The age of this entry in seconds (used with the Status field).

Using these fields you can filter packets based on one or more criteria:

1. The packet’s Source Interface
2. The packet’s Destination Interface
3. A specific field in the Ethernet Frame

Filter Matching Procedure

Bridge filtering is sometimes referred to as packet-filtering because the decision to al-
low or deny (filter) a packet is based on the contents of the packet. As frames are re-
ceived the contents are compared to each defined filter, starting with the Allow Table,
then the Deny Table. A packet is said to match a filter if all its conditions are met. A
filter condition may be one of the following.
129

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
SrcIfIndex = the interface this frame was received on.
DstIfIndex = the interface this frame would be forwarded on.
Value = the contents of the frame starting from ByteOffset bytes

The common practice of encapsulating datagrams within datagrams (as shown be-
low) poses no problem to the BRICK. As a bridge it doesn’t differentiate the individual
fields, it simply sees the complete packet as a sequence of bytes. Using the ByteOffset
and Value fields you can define filters that are based on the actual contents of the frame.

When filtering packets based on contents of the ethernet frame it’s important to
know the relative locations (offset) and possible values of the frame’s fields. Below is

NOTE: A "0" in the SrcIfIndex and/or DstIfIndex fields
means match any interface.

IP Datagram
IP Data Field

Dest.
Address

Source
Address Type Ethernet Frame Data CRC

TCP Datagram
TCP Data Field

Ethernet II Frame
130

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
an ethernet frame that highlights some of the more interesting fields (with respect to
bridge filtering).

Ethernet II Frame
Dest.

Address
Source
Address Type Ethernet Frame Data CRC

Version Header Total LengthLength Service Type

Identification Fragment OffsetFlags

Time To Live Protocol Header Checksum

Source IP Address

Destination IP Address

Offset 30

Offset 26

Offset 12Offset 0 Offset 6

IP Datagram

Offset 23

2 = IGMP
3 = GGP
6 = TCP
8 = EGP

12 = PUP
17 = UDP
22 = IDP
63 = HELLO

1 = ICMPValue

77 = ND

Value
0806 = ARP
0835 = RARP
8137 = IPX

0800 = IP
131

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
The packet is compared with all Allow and Deny Table entries and a decision is
made based on the following algorithm.

Configuring Bridging on the BRICK

Enabling Bridging
There are two basic requirements to fulfil before the BRICK begins bridging.

1. The biboAdmBridgeEnable object must be set to "enabled".
2. At least two interfaces must be enabled in the dot1dStpPortTable. Here, two

or more interfaces’ Enable field must be set to "enabled".

Bridge Initialization
Once bridging has been enabled, the system goes through three internal phases before
bridging can actually take place.

1. Listening—During the listening phase the system transmits configuration BP-
DUs and evaluates any others it receives. In this phase the spanning tree is
computed and the root bridge is determined. The bridge ID of the root bridge
is then set in DesignatedRoot variable of the dot1dStpPortTable.

2. Learning—The system then switches to the learning phase where all frames it
receives are evaluated.

NOTE: Both steps can be accomplished using Setup Tool.
Refer to Chapter 5 of the User’s Guide.

Allow Table
empty?

Deny Table
empty?

Match an
Allow entry?

Match a
Deny entry?

Route frame!

Discard frame!

yes

yes

yes

no

no

no

yes

no

Incoming
Frame
132

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
3. Forwarding—After a preset time (defined in IEEE802.1d-1990), the BRICK
switches to the forwarding state.

Once the system reaches the forwarding state, the BRICK checks the
dot1dStpPortTable to see which interfaces are available for bridging.
133

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Using the BRICK as a Bridge
Below are some examples of setting up the BRICK as a bridge.

• In the first example we’ll use the BRICK to bridge between two local LAN seg-
ments (i.e., a BRICK-XM or BRICK-XL with two LAN interfaces is assumed.)

• In the second example we’ll use the BRICK as a bridge to connect a local LAN
with a remote LAN over a dialup ISDN link.

• In the last example we’ll extend the previous example showing you how to
add filters to control bridging traffic and to save money.

Bridging between LANs

Step 1
First make sure the bridging service is enabled on the BRICK.
The biboAdmBridgeEnable variable must be set to "enabled ".

Step 2
Next we need to enable the interfaces we want to bridge between. The
dot1dStpPortTable lists all available interfaces for bridging. For ethernet interfaces

mybrick: > biboAdmBridgeEnable=enabled

biboAdmBridgeEnable(rw): enabled

mybrick : admin>

LAN Segment A LAN Segment B

ifIndex 2001ifIndex 1001
134

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
you must use the "*-llc" interface. This ensures that the LLC (Link Layer Control) frame
format is used.

Step 3
That’s all that is required for our setup. The BRICK will now run through it’s Bridge
Initialization functions. You can optionally see the state of the bridging interfaces by
displaying the dot1dStpPortTable. You can also see the list of learned bridging entries
by displaying the dot1dTpFdpTable.

mybrick : admin> dot1dStpPortTable

inx IfIndex(*ro) Number(ro) Priority(rw)
State(ro) Enable(rw) PathCost(rw)
DesignatedRoot(ro) DesignatedCost(ro) DesignatedBridge(ro)
DesignatedPort(ro) ForwardTransitions(ro) BackupForIfIndex(rw)

 00 1001 0 0
disabled 0

80:0:0:a0:f9:0:e:91 0 80:0:0:a0:f9:0:e:91
0 0 0

00 2001 0 0
disabled 0

23:a0:21:a3:f5:0:d:88 0 80:0:0:a0:f9:0:e:91
0 0 0

mybrick : dot1dStpPortTable> IfIndex:00=enable IfIndex:01=enable

mybrick : admin> dot1dTpFdbTable

inx Address(*rw) DestPortIfIndex(rw) Status(-rw)
Age(ro)

00 0:a0:f9:0:e:91 1001 self
0 00:12:47.00

00 0:a0:f9:0:c:2c 2001 self
0 00:12:47.00

00 0:a0:f9:0:b:12 1001 learned
0 00:12:47.00

mybrick : dot1dTpFdbTable >
135

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Bridging over WAN Links

Step 1
We’ll assume the bridging service has been enabled (see previous example). First, cre-
ate a new PPP interface for the Remote Bridge. Creating PPP interfaces is covered in
chapter 7. Here we set the Type field in the biboPPPTable to "isdn_dialup ". The

Remote
Bridge

ISDN

LAN Segment A
LAN Segment B

IfIndex 10001

IfIndex 1001
136

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
BRICK will assign a unique numerical value to the IfIndex field that we’ll need in Step
2.

Step 2
Now we can add the Remote Bridge’s telephone number to the biboDial-Table. We set
the IfIndex and the Number field in one operation. In the IfIndex field, we use the
number assigned by the BRICK in the previous step.

mybrick: admin > biboPPPType=isdn_dialup
05: biboPPPType.1.5(rw): isdn_dialup

mybrick : biboPPPTable > biboPPPTable
inx IfIndex(ro) Type(*rw) Encapsulation(-rw)

Keepalive(rw) Timeout(rw) Compression(rw)
Authentication(rw) AuthIdent(rw) AuthSecret(rw)
IpAddress(rw) RetryTime(rw) BlockTime(rw)
MaxRetries(rw) ShortHold(rw) InitConn(rw)
MaxConn(rw) MinConn(rw) Callback(rw)
Layer1Protocol(rw) LoginString(rw)

05 10006 isdn_dialup ppp
off 3000 none
none
static 4 300
5 20 1
1 1 disabled
data_64k

mybrick : biboPPPTable>

mybrick: biboPPPTable > biboDialIfIndex=10006 biboDialNumber=555

06: biboDialIfIndex.10006.6(rw): 10006
06: biboDialNumber.10006.6(rw): "555"

mybrick : biboDialTable >
137

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Step 3
Now we can enable the local and the remote interfaces to bridge between. The
dot1dStpPortTable should have an entry for our local ethernet segment as well as our
new PPP partner interface.

The configuration is complete. We can optionally verify that bridging has started by
displaying the dot1dStpPortTable and the dot1dTpFdpTable as mentioned in the pre-
vious example.

Further optional settings are afforded by the following variables, which give you ad-
ditional influence over your WAN-link bridges:

mybrick : admin> dot1dStpPortTable

inx IfIndex(*ro) Number(ro) Priority(rw)
State(ro) Enable(rw) PathCost(rw)
DesignatedRoot(ro) DesignatedCost(ro) DesignatedBridge(ro)
DesignatedPort(ro) ForwardTransitions(ro) BackupForIfIndex(rw)

 00 1001 0 0
forwarding disabled 0
80:0:0:a0:f9:0:e:91 0 80:0:0:a0:f9:0:e:91
0 0 0

05 10001 0 0
 broken disabled 0

0
0 0 0

mybrick : dot1dStpPortTable> IfIndex:00=enable IfIndex:05=enable

NOTE: For most sites bridging over WAN links is less desirable
due to the possibility of increased ISDN costs incurred
through dialup connections. With careful consideration
and planning however bridge filters can be used to
make bridging over WAN links a viable alternative.
138

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Delay before Change of State

The first is dot1StpBridgePPPForwardDelay and is an addition to the dot1dStp ta-
ble. The unit of the value of this variable is 1/100 seconds, the range lies between 100
and 3000 and the default value is 500 (= 5 seconds).

This variable defines how long the port of a PPP connection (leased line or dial-up
connection) should wait before a change of state may take place. After the establish-
ment of an ISDN connection, the state takes this set period of time to change from lis-
tening to learning, then the same time again to change from learning to forwarding.
dot1StpBridgePPPForwardDelay only affects WAN connections like PPP and X.25.

When the default value (500) is set, it takes 5 seconds to change the state from listen-
ing to learning and another 5 seconds to change from learning to forwarding. After an
ISDN connection has been made, it consequently takes 10 seconds until data is trans-
mitted in the state forwarding.

This period of time is necessary to detect redundant paths.

Backup for a Leased Line

The second variable is dot1dStpPortBackupForIfIndex and is an addition to the
dot1dStpPortTable.

This variable is conceptualised for a situation in which two BRICKs are bridging two
local networks over PPP connections. One of these is a leased line, the other a dialup
line.

dot1dStpPortBackupForIfIndex is used to configure the dialup connection as a
backup connection for the leased line connection.

In the dot1dStpPortTable, set the value of the dot1StpPortBackupForIfIndex varia-
ble for the interface of the dialup line with the same value as in the
dot1dStpPortIfIndex of the leased line port. This effectively makes the port of the dia-
lup line serve as the backup link for the leased line. As long as the leased line functions
properly (its state is forwarding), the dialup link is not established. Should the leased
line fail, however, the dialup link (backup) is established and the entries for the port of
the leased line in the dot1dTpFdbTable are deleted.
139

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Controlling Bridging Activity Using Filters
Now we want to show you how to use Bridge Filters to control bridging traffic. Bridge
filters are most commonly used when bridging over ISDN WAN links to minimize
costs. Remember that bridge filtering is based on the contents of the ethernet frame. An
overview of the ethernet frame format was covered here.

Following are three examples that could be used to extend the previous example for
bridging over WAN links. We’ll assume bridging is already configured so we can focus
on the filter entries. The following three examples show how to:

1. Filtering frames sent from a particular host (by MAC address)
Here we want to single out packets from a specific host by filtering the MAC
address field of the ethernet frame.

2. Filtering all IPX packets coming from the local LAN
Here we want to filter out all IPX packets, this can be done by filtering out the
Type field in the MAC header.

3. Filtering broadcast packets
Here we want to filter out all broadcast packets (destination address field is
ff:ff:ff:ff:ff:ff in hexadecimal).

Filtering frames sent from a particular host (by MAC address)

To filter out all frames sent from a specific host we first need the host’s MAC (hard-
ware) address. Then, all we need is one Deny Filter that filters out all frames sent from
this host.

Remote
Bridge

ISDN

LAN Segment A
LAN Segment B

IfIndex 10001

IfIndex 1001
140

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Assuming our source host had a MAC address of 0:a0:f9:0:e:19 and was attached to
the BRICK’s first ethernet interface (en1 or 1001) our filter would be created as follows.

mybrick: admin > dot1dStaticDenyTable

inx SrcIfIndex(*rw) DstIfIndex(*rw) ByteOffset(rw) Mask(rw)
Value(rw) Status(-rw) Age(rw)

mybrick: dot1dStaticDenyTable >SrcIfIndex=1001 DstIfIndex=0 ByteOffset=6
Value=0:a0:f9:0:a0:19

00: dot1dStaticDenySrcIfIndex.1001.0(rw): 1001
00: dot1dStaticDenyDstIfIndex.1001.0(rw): 0
00: dot1dStaticDenyByteOffset.1001.0(rw): 6
00: dot1dStaticDenyValue.1001.0(rw): 0:a0:f9:0:a0:19

mybrick: dot1dStaticDenyTable > dot1dStaticDenyTable

00 1001 10001 6
0:a0:f9:0:a0:19 permanent 0 00:03:24.00

mybrick: dot1dStaticDenyTable >

NOTE: Since the SrcIfIndex and DstIfIndex fields are index var-
iables (required for creation of new table entries) we
also specify them here. Also rememer that the special
value "0" matches all interfaces.
141

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Filtering all IPX packets coming from the local LAN

A single Deny filter is all that’s needed to filter out all IPX packets originating on a spe-
cific LAN segment. IPX packets are identified by the protocol ID of 0x8137 in the Type
field of the Ethernet frame. This filter will ensure that no IPX packets coming from the
LAN segment are bridged to our ISDN interface at 10001.

As in the previous example we’ll assume basic bridging has already been config-
ured. Our filter would be created as follows.

Filtering broadcast packets

Broadcast packets can also be easily filtered out using the "Destination Address" field
in the MAC frame. Broadcast addresses can be identified by the value ff:ff:ff:ff:ff:ff

mybrick: dot1dStaticDenyTable >

mybrick: dot1dStaticDenyTable > SrcIfIndex=1001 DstIfIndex=10001
ByteOffset=12 Value=81:37

01: dot1dStaticDenySrcIfIndex.1001.0.1(rw): 1001
01: dot1dStaticDenyDstIfIndex.1001.0.1(rw): 10001
01: dot1dStaticDenyByteOffset.1001.0.1(rw): 12
01: dot1dStaticDenyValue.1001.0.1(rw): 81:37

mybrick: dot1dStaticDenyTable > dot1dStaticDenyTable

inx SrcIfIndex(*rw) DstIfIndex(*rw) ByteOffset(rw) Mask(rw)
Value(rw) Status(-rw) Age(rw)

01 1001 10001 0
81:37 permanent 0 00:10:06.00

mybrick: dot1dStaticDenyTable>

NOTE: If we had several exceptions to this rule to account for
(filter all IPX packets except those from hosts x,y, and z)
we would create either a series of Allow entries or Deny
entries for individual host MAC addresses depending on
which required the least entries.
142

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

7

Configuring the BRICK as an IP Router

What’s Covered?

■ TCP/IP Primer

• Encapsulation
• IP Addressing
• Subnetting
• Protocols, Ports and Sockets

■ IP Routing Protocols
• RIP
• OSPF
• The Point-to-Point Protocol

■ DialUp IP Interfaces
• Creating a DialUp IP Interface
• DialUp Options

■ Dual IP Address Interfaces

■ IP Routing on the BRICK

■ Extended IP Routing

■ BOOTP and DHCP
• BootP Relay Agent Settings
BIANCA/BRICK Software Reference
• DHCP Server Setting
• DNS and WINS (NBNS) Relay

■ DNS and WINS Addresses over PPP

■ Dynamic IP Address Assignment
• Server Mode
• Client Mode

■ Routing with OSPF
• OSPF System Tables
• Example OSPF Installation

■ Import - Export of Routing
Information

■ Advanced IP Features
• IP Session Accounting
• Network Address Translation
• Proxy ARP
• RIP Options
Chapter Seven
1CONFIGURING THE BRICK

AS AN IP ROUTER
143

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing

the
TCP/IP Primer
TCP (Transmission Control Protocol)/IP (Internet Protocol)1 is often used to refer to
the more general set of protocols known as the internet protocol suite. The protocols
were designed to allow different types of computers and networks to communicate ef-
fectively. The internet protocol suite can be broken down into several layers, each of
which provides/requires the services of an adjacent layer. These layers are often re-
ferred to as the TCP stack. The ordering and a brief description of each of these layers
is shown below.

Note that each layer sends and receives information from adjacent layers. When a
computer receives information from the network data passes upwards through the
stack until it reaches the user’s application. In the opposite direction; a user application
sends data over the network, data moves downward through the stack until it reaches
the physical network cabling.

Depending on where in the stack the data is and the direction it is moving, each lay-
er performs applies additional information to or removes information from the packet.
This mechanism is referred to as Encapsulation and is discussed in the next section.

1. This and following sections provides a greatly condensed discussion of TCP/IP. For detailed information
reader is referred to a comprehensive discussion of TCP/IP such as theInternetworking wth TCP/IPSeries by
Douglas E. Comer orTCP/IP Illustrated by W. Richard Stevens.

TCP/IP Stack Example Protocols

Network Access
Layer

Internet
Layer

Transport
Layer

Application
Layer

➊

➋

➌

➍ Telnet FTP TFTP SNMP NFS

TCP UDP

IP

EGP

Consists of applications
that use the network.

Provides end-to-end
data delivery services.

Deals with and handles
routing of packets.

Routines for accessing
the phyical network. Ethernet Token Ring
144

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Encapsulation
The diagram on the following page shows the header information used at different lay-
ers when passing information between layers.

When information moves down the stack the sending layer applies control informa-
tion to the data; this is referred to as header information. Each layer treats all informa-
tion it receives from the layer above as data.

When information moves up the stack the receiving layer reads the header informa-
tion (included by the sending computer), strips the header information away, and
gives the leftover data to the next layer above. As infomratin moves up the stack each
layer treats the information as header information and data combined.

• Network Access Layer ➔ Internet Layer
At this step, the contents of the ethernet frame’s data field are simply passed
to the Internet Layer. Note that the frame format used at this level may be
slightly different (see section Ethernet Framing Types in Appendix B) but the
concept is the same.

• Internet Layer ➔ Transport Layer
Here, the Internet Layer removes the IP header from the bytestream and de-
cides which protocol in the Transport Layer to pass the data to using the value
of the Protocol field.

• Transport Layer ➔ Aplpication Layer
The transport layer provides two types of very different services. The transport
layer is responsible for passing the information to the proper port at the receiv-
ing host. This is determined by the contents of the destination port field.

The TCP protocol is connection-oriented and provides
error-detection and error-correction. Applications in the higher level
layers requiring such services establish network connections using the
TCP protocol.

The UDP protocol is connection-less and provides a datagram
delivery service. UDP based applications are message oriented and
don’t require the extensive services provided by TCP.
145

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Dest. MAC
Address

Source MAC
Address Type Ethernet Frame Data CRC

Vers. Len Service Type Total Length

Identification Fragment OffsetFlags

Time To Live Header ChecksumProtocol

Source IP Address

Destination IP Address

Options Padding

Data field

Offset Window

Options Padding

Data field

Sequence Number

Acknowledgement Number

Source Port Destination Port

Checksum Urgent Pointer

Reserved Flags

Source Port Dest Port

Length Checksum

Data field

Protocol=6 Protocol=17

TCP Segment:

UDP Message:

IP Datagram:

Ethernet Frame:

Telnet
port: 23

DNS
port: 53

RIP
port: 520FTP

port: 21

T
ra

n
sp

o
rt

L
a
y

e
r

In
te

rn
e
t

L
a
y

e
r

N
e
tw

o
rk

A
cc

e
ss

A
p

p
li

ca
ti

o
n

L
a
y

e
r

SNMP
port: 161

TFTP
port: 69
146

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
IP Addressing
The Internet Protocol delivers packets to hosts using the Source and Destination host’s
Address fields found in the IP header. IP addresses consist of 4 octets, 8 bits/each to-
talling 32 bits. Addresses are commonly written in decimal form with each octet sep-
arated by dots (hence the term dot notation).

A typical IP address is 192.168.16.8, or
1100 0000.1010 1010.0001 0000.0000 1000 in binary.
An IP address consists of a network portion that identifies the network number and

a host portion that identifies the host’s number on that network. The location of the di-
viding line that separates the network portion from the host portion is different based
on the network’s “Class”. There are 3 network classes which can be identified as fol-
lows:

There is a 4th network class (Class D, octect 1 > 223) that is used for multicast ad-
dresses. Multicast addresses are used to address groups of computers that share a com-
mon protocol (as opposed to a common network) at one time.

Class Octect 1
begins with

Octet 1 Octet 2 Octet 3 Octet 4

Class A 0... < 128 1 - 254 1 - 254 1 - 254

Networks Hosts

Class B 10... 129 - 191 1 - 254 1 - 254 1 - 254

Networks Hosts

CLass C 110... 192 - 223 1 - 254 1 - 254 1 - 254

Networks Hosts
147

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Subnetting
Subnetting involves dividing an IP network into separate networks. It’s often used to
overcome topological constraints (cable lengths) or for organizational reasons (delega-
tion of network management tasks).

Recall that a 32 bit IP address consists of a network portion and a host portion. Local
sites can extend the meaning of the network portion to include some bits from the
host’s portion. Essentially this moves the dividing line between the network bits and
the host bits creating additional networks but reducing the number of hosts on them.

To create a subnet each network host must use a 32 bit (4 octets) network mask, or
“netmask”. The bit values in the mask determine where the dividing line between the
net and host portions are.

1. If the bit in the mask is ON (=1), the respective bit in the IP address belongs to
the NETWORK portion.

2. If the bit in the mask is OFF (=0), the respective bit in the IP address belongs
to the HOST portion.

This is where the standard network masks come from.

A subnet mask commonly used on Class C networks is 255.255.255.192. This mask
could be used to divide the 19.168.16.0 network into 4 subnets because the first two
high order bits of the last octet are set. These 2 bits limit us to 4 possible subnets. This
would include networks: 0, (0000 0000), 64 (0100 0000), 128 (1000 0000), and 192 (1100
0000).

Class C Address: 192
(1100 0000)

168 16 66
(1010 1010) (0001 0000) (0100 0010)

. . .

Class C Netmask: 255
(1111 1111)

255 255 0
(1111 1111) (1111 1111) (0000 0000)

. . .

HostNetwork

Example Address: 192
(1100 0000)

168 16 66
(1010 1010) (0001 0000) (0100 0010)

. . .

Example Netmask: 255
(1111 1111)

255 255 192
(1111 1111) (1111 1111) (1100 0000)

. . .

HostNetwork
148

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Once this netmask is applied, six bits of octet 4 are left over to identify the host. Six
bits limit us to 64 (or 26) hosts per subnet. The example above identifies host number 2
(000000102 = 210).

The netmask above extends the network part to include the first two bits of octect 4
to identify the subnetwork. As stated above, 2 bits limits us to 4 subnets. The example
above identifies subnetwork 64 (010000002 = 6410).

So, the example address 192.168.16.66 when used with netmask 255.255.255.192, be-
comes equivalent to host 2 on subnet 192.168.16.64.
149

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Protocols, Ports and Sockets
Together port numbers and protocol numbers identify a specific application (often re-
ferred to as a network service) on a host conputer.

The protocol number (the protocol field of an IP datagram) is an 8 bit number that
identifies the transport protocol (UDP or TCP) in the Transport Layer. The Internet
Layer uses this field when passing data up the stack. Some of the most commonly used
protocol numbers include:

A port number is a 16 bit number that identifies an application in the Application
Layer. The Transport Layer uses this number (the destination port field of the UDP mes-
sage or TCP segment) when passing data up the stack.

Both a Source and a Destination Port field is present in the IP Datagram.

Number Protocol and Name

0 IP Internet Protocol

1 ICMP Internet Control Message Protocol

3 GGP Gateway Gateway Protocol

6 TCP Transmission Control Protocol

8 EGP Exterior Gateway Protocol

12 PUP PARC Universal Packet Protocol

17 UDP User Datagram Protocol

20 HMP Host Monitoring Protocol

22 XNS-IDP Xerox NS IDP

27 RDP Reliable Datagram Protocol

29 OSPF Open Shortest Path Routing First

The current list of Protocol Numbers are contained in RFC 1700.
This information is also available via the WWW from IANA
(Internet Assigned Numbers Authority) via:
ftp://ftp.isi.edu/in-notes/iana/assignments/protocol-nummbers

?

150

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
For IP packets moving up the TCP stack:
Src Port = port number of the sending application on remote host.
Dest Port = port number of the receiving application on the local host.

For IP packet moving down the stack:
Src Port = port number of the sending application on the local host.
Dest Port = port number of the receiving application on the remote host

The 16 bit port number defines a limit of 65,536 (216) possible port numbers. These
65,536 ports are divided as follows.

The privileged ports consist of standard port numbers, often referred to as “well
known ports” that identify standard network services available on a computer;. The
unprivileged ports are non-standard ports that may be defined by local hosts. Logically
server port numbers are used by server applications and client ports by client applica-
tions. The assignment of port numbers will be made clear in the example network con-
nection diagram that follows.

A few of the commonly used server port numbers are shown below.

0 ➔ 1023 1024 ➔ 4999 5000➔ 32767 32768 ➔ 65535

priviledged unprivileged

server clients server client

Number Port am Name

21 FTP File Transfer Protocol

23 telnet The TELNET protocol/service

25 SMTP Simple Mail Transfer Protocol

53 domain Domain Name Service or DNS

80 HTTP Hypertext Transmission Protocol

119 NNTP Network News Transfer Protocol
151

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
A Socket identifies a specific network service on a computer (or other device). A
socket consists of IP Address.Port Number. A computer at IP address 192.168.10.5
might provide a TELNET service at TCP port 23; the TCP socket is said to be:
192.168.10.5.23. Since many network services are multi-user applications a socket pair
is required to identify a specific network connection. This socket pair consists of Client
Socket:Server Socket. The diagram shown below shows how ports and sockets are
used in a typical network connection.

The current list of Well Known Port Numbers are contained in RFC
1700. This information is also available via the WWW from IANA
(Internet Assigned Numbers Authority) via:
ftp;//ftp.isi.edu/in-notes/iana/assignments/port-numbers

?

Client
(telnet)

Server
(telnetd)

Server Socket:Client Socket:
192.168.10.5.1072 192.168.0.99.23

192.168.10.5 192.168.0.99

Src Port:

Dest Port:

23

1072
➋

Src Port:

Dest Port:

1072

23
➊

➊ Client initiates connection

Source Port = dynamically allocated
(see port number ranges in table)

Dest Port = server’s well known port

➋ Server accepts connection

Source Port = well known port
Dest Port = client’s source port

(from RFC 1700)
152

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
IP Routing Protocols
In general, routing can be described as a method to determine the best interface to use
when forwarding an incoming packet. The term “best interface” means selecting the
interface from the router’s routing table(s) that has the lowest cost. Cost is often meas-
ured by the number of intermediate stations the packet would pass through before
reaching its destination.

The contents of the routing table may be configured statically. A router may option-
ally update its routing tables dynamically by exchanging information between other
routers. This exchange of routing information is defined by a routing protocol.

Although all systems route data (PCs, workstations, routers) not all systems run a
routing protocol. Some networks don’t necessitate routing protocols —sites where
routing information doesn’t change or where only one route (or a set number of routes)
exists.

Routing protocols allow a router to dynamically adapt to changing network condi-
tions and to quickly make the best routing decision in complex networks. The two most
commonly used (interior)1 routing protocols; RIP and OSPF are covered briefly below.

RIP
With RIP (Routing Information Protocol) a router transmits and receives routing infor-
mation among other routers. Approximately every 30 seconds a router broadcasts mes-
sages to adjacent networks using information from it’s current routing table. This in-
formation consists of pairs of IP Address:Distance relationships. RIP determines a
route’s cost by the number of “hops” (distance) it takes for a packet to reach it’s final
destination. For this reason RIP is sometimes referred to as a distance vector algorithm.

By listening for information sent by other routers new routes and shorter paths for
existing routes, are saved to the routing table when discovered via RIP. Because inter-
mediate routes between networks may become unreachable, RIP also removes routes
older than 5 minutes (i.e. routes that haven’t been verified in the last 300 seconds).

OSPF
OSPF (Open Shortest Path First), is an interior routing protocol that is often used by
larger network installations as an alternative to RIP. It was originally designed to ad-

1. The distinction betweenInterior andExterior protocols is beyond the scope of this overview.
153

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
dress some of the limitations of RIP (when used in larger networks). Some of the prob-
lems (with RIP) that OSPF addresses include:

• Faster Network Convergence
Changes in routing information are propagated immediately when changes
occur and not periodically as with RIP.

• Reduced Network Load
After a brief initialisation phase, routing information does not need to be re-
freshed as in RIP where the entire routing table is broadcast every 30 seconds.

• Routing Authentication
Routers advertising OSPF routes can be authenticated.

• Routing Traffic Control
OSPF areas can be closed to limit the amount of traffic resulting from routing
advertisements.

• Link-Costs
When calculating a route’s cost OSPF can account for the different transport
mediums such as LAN or WAN links.

• No hop-count limitations
In RIP, routes spanning more than 15 hops are unreachable.

Although the OSPF protocol is more complex than RIP the basic concept is the same;
the best interface must be calculated for forwarding packets to a particular station.
154

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Shortest Path Routing

With RIP, routes are measured and selected according to number of hops it takes for a
packet reach it’s destination. In the diagram below, each node represents an IP router.
According to RIP, the best route for a packet travelling from A to C will always be ABC.

In OSPF each link has a cost associated with it (typically some fixed number divided
by the bandwidth of the link). Routes are calculated and selected according to the least
cost of the overall path a packet will travel. Thus in shortest-path routing the best path
is also the fastest path (theoretically), regardless of the number of stations a packet
travels through.

Assuming the relative costs of the links in the diagram above (shown in blue), ac-
cording to OSPF the best route for a packet travelling from A to C is ABEFC (cost = 6).
This route requires 4 hops as opposed to the 2 hop route (ABC) selected.

A

B C

DE F

G H

2
6

1

4

42 1

3 33 2
155

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
OSPF Routers and Link State Advertisement

OSPF is based on a concept of Areas. An Autonomous System (AS) consists of one or
more Areas defined by network management. An Area may contain of one or more IP
networks.

If an AS does contain more than one area one must be designated as the backbone,
area: 0.0.0.0. All Area Border Routers (see Router Types) in an AS must have a physical
connection to the backbone.

Any of the routers shown above could additionally be the Designated Router or
Backup Designated Router for its respective network.

ABR

IR

ASBR

ASBR

Area 1

Area 2

Area 1

Autonomous System 1000

Autonomous System 2000

backbone
0.0.0.0
156

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
OSPF Virtual Links

Note that in OSPF the backbone, Area 0.0.0.0, is the center for all areas in the Autono-
mous System. However, sometimes it’s not possible to physically connect all areas to
the backbone. By configuring a “Virtual Link” between two area border routers a re-
mote area an still be assigned to the backbone.

As shown in the diagram below. a virtual link is established between two Area Bor-
der Routers that share a common area; called the “transit area”. Both routers must be
physically connected to the backbone.

Router Types

The location of a router’s interfaces with respect to an area determines the type of rout-
er it is and the types of Link State Advertisements it exchanges with other routers in
that area.

• Internal Routers (IR) – A router whose interfaces are within the same area. All
Internal Routers compute the shortest path tree to all destinations within its ar-
ea.

• Area Border Router (ABR) – A router with interfaces in different areas but
within the same autonomous system. Topological information is gathered (and
stored) for each attached area allowing the ABR to compute the shortest path
tree for each area separately.

Area 0.0.0.0Area 10.0.0.0

Area 0.0.0.0

(backbone)(transit area)

(virtual area)

10.0.1.1

Virtual Link

Brick-A

Brick-B

10.0.1.2
157

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• Autonomous System Border Router (ASBR) – A router that acts as a gateway
between OSPF and external routes (i.e., routes provided by other routing pro-
tocols, static indirect routes, etc.). These routers propagate routes to external
networks.

• Designated Router (DR) – On broadcast networks (token ring and ethernet)
where more than two routers are present only the DR needs to synchronise its
link state database with other routers.

• Backup Designated Router (BDR) – A backup router assumes the responsibil-
ities performed by the DR if that system goes down.

Link State Advertisement Types

OSPF routers exchange routing information via Link-State Advertisements (LSAs)
that contain information about the networks that can be reached over the router’s in-
terfaces.

Link State Advertisements are broken down into five different types shown in the
table below. The example network shown on the previous page is redisplayed below
and shows where the different types of LSAs would be found in an OSPF network.

LSA Type Purpose:

Router
Links

Generated by: ALL OSPF Routers
Purpose: Contains information regarding the state of a router’s
interfaces within a particular area. Router Links are only flooded
within a single area.

Network
Links

Generated by: The DR (or BDR).
Purpose: Identifies all OSPF routers present on the network seg-
ment and their state. These links are only flooded within a single
area.

Summary
Links

Generated by: Area Border Routers
Purpose: Identifies the presence of networks within an AS but
outside the (local) area. Provides Inter-Area routes allowing rout-
ers to learn of networks in other Areas but within the AS.
158

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ASBR
Summary
Links

Generated by: An Area Border Router.
Purpose: A special type of summary link that provides routes to
Autonomous System Border Routers allowing other routers in the
AS to find their way out of the system.

External
Links

Generated by: An Autonomous System
Border Router.
Purpose: Contains information about other Autonomous Systems
and allows routers to learn about routes to networks there. Exter-
nal links are flooded into all areas except stub areas.

LSA Type Purpose:

ABR

IR

ASBR

ASBR

Area 1

Area 2

Area 1

RouterSummary Links

External

Network
Links

Links

Autonomous System 1000

Autonomous System 2000

Links

Router Links
Network Links

Router Links
Network Links
159

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Router Identification

All OSPF routers in an Autonomous System must have a unique Router ID that iden-
tifies the router with respect to the AS. Generally an OSPF router’s Router ID is taken
to be the highest IP address for its first LAN interface.

Initialization

OSPF networks are said to be much “quieter” in comparison to RIP based networks.
This is because in OSPF once the initialization phase is complete routing information
is only exchanged when link state changes occur. This is much different than with RIP
where every 30 seconds a router’s complete routing table is broadcast and verified over
the network.

The initialization phase of OSPF is completed once the Link State Database for the
area has stabilized and generally occurs once:

1. The OSPF Neighbors have been identified.
2. The Designated and Backup Designated Routers have been established.

Neighbor Identification

When first coming into service an OSPF router attempts to identify its neighbor OSPF
routers using the HELLO protocol. Two router are neighbors if they:

1. Share a common network.
2. Are using the same Area Number for that segment.
3. Are using the same Authentication for the segment.
4. Are using the same parameters (HELLO interval, etc.).

Neighbor routers then decide whether to synchronise their Link State Database
(LSDB) with one another. All routers on the segment synchronise their LSDBs with the
Designated Router (DR) and the Backup Designated Router (BDR).

Designated/Backup Designated Router Election

When Neighbor routers are identified (via the HELLO protocol) the DR and BDR are
also identified. This is sometimes called DR and BDR election and is achieved via IP
multicast packets which a router broadcasts via each network segment. For each seg-
160

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ment the router with the highest OSPF priority generally becomes the DR. In case of a
tie, the router with the higher Router ID becomes the DR.

The DR and BDRs for the three networks shown above would be elected as follows.

Network DR BDR

10.1.1.0 RTR-B RTR-A

10.1.2.0 RTR-A RTR-C

10.1.3.0 RTR-C RTR-B

P=2

P=1

Net 10.1.3.0
P=0

Net 10.1.2.0

Net 10.1.1.0

P=1
ID=10.1.2.1

ID=10.1.1.2

ID=10.1.1.1

P=2

P=1RTR-A

RTR-B

RTR-C
161

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Building up the LSD and the STP

Link-State Advertisements, contain information about a routers interfaces (i.e.; link’s
IP address, mask, network type, networks reachable over the link, etc.).

All routers within an area receive all link-state information for all routers in the area.
Once synchronized each router has an identical image of the link state database that
describes the topological structure of the area.

This database allows each router to separately calculate a shortest path tree (SPT),
using itself as the root, to any destination in the area. The SPT is used to determine the
best interface to route packet. As in RIP the lowest cost route is used however the cost
to a destination is calculated differently. In OSPF the cost (or metric) of a link is a func-
tion of the bandwidth provided by the link. The higher the bandwidth, the lower the
cost.

Authentication

OSPF allows packets containing OSPF routing information to be individually authen-
ticated. Two authentication methods are available which must be configured separate-
ly for each network segment.

1. Simple (password) authentication
A simple text string is sent with each packet. This method is less secure since
packet contents can be “sniffed” off the wire using a link analyzer.

2. MD5 (cryptographic) authentication
When MD5 (Message Digest) is used each packet is appended with a 16 byte
encrypted digest. The digest is a function of an authentication key and the con-
tents of the packet. This method is more secure since the key is not sent with
the packet.

Note: With MD5 authentication only the digest is encrypted
and not the actual contents of the OSPF packet.
162

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
OSPF over Demand Circuits

Although OSPF generates less network traffic than RIP, the occasional exchange of
routing information (HELLO packets, Link State Database updates or changes, etc.)
can lead to increased costs for dial-up interfaces.

To help minimize these costs OSPF on the BRICK has been implemented to include
special extensions for Demand Circuits as defined in RFC 1793, OSPF over Demand Cir-
cuits. These extensions allow for efficient use of dial-up interfaces with OSPF and
avoiding excessive ISDN costs. In particular, this means:

1. The exchange of HELLO packets between neighbours is suppressed once the
BRICK has synchronized its LSDB with that neighbour (A dial-up connection
is initially opened to synchronize the database.).

2. Link State advertisements are only flooded to neighbour routers when an ac-
tual change needs to be propagated.
Each LSA is marked with a special DoNotAge flag (identifiable by the DC-bit
of the LSA or OSPF packet).

Note: This feature should only be used if all routers in the AS
support this feature (RFC 1793) since some routers don’t
acknowledge the DC-bit (or use it differently). This could
result in unwanted ISDN connections or connections.

Note: If a router without RFC 1793 support is removed from the
domain in which this feature has been used it is recom-
mended that all OSPF routers be briefly deactivated
and re-activated to ensure that all LSAs generated by
the removed router are actually flushed.
163

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
The Point-to-Point Protocol
The PPP (Point-to-Point Protocol) was designed as a standard method of communicat-
ing over point-to-point links. PPP actually consists of several underlying protocols,
each of which perform a portion of the services offered by PPP.

In addition to HDLC (High level data link control) framing, PPP uses LCP (Link
Control Protocol). LCP is used to negotiate options pertaining to the data link. Some of
the options which can be negotiated using LCP are:

1. Maximum-Receive-Unit: The MRU specifies the maximum size of data pack-
ets to be processed over this link. The default value is 1500 bytes.

2. Authentication-Protocol: This option is used to specify which authentication
procedure (CHAP or PAP), if any should be used for this link.

3. Quality-Control: This option specifies whether or not the quality of the link
should be monitored.

4. Protocol-Field-Compression: This option specifies which, if any, protocol
fields should be compressed over the link. Using this option could allow a
higher throughput rate to be achieved.

Establishing a PPP connection

Establishing a PPP connection is accomplished step by step, in three simple phases.

1. Before any user data can be sent, the communicating partners must agree on
which communications parameters the connection will use. This is accom-
plished using LCP mentioned earlier. Step by step, each side of the connection
negotiates with the other to establish the best possible communications param-
eters.

2. The second phase is where the optional process are actually performed. This is
where the authentication procedure (CHAP or PAP) would be performed if
specified in phase 1. Additional parameters agreed upon in phase 1 are also
performed here as well; i.e. if the Quality-Control option was agreed upon, a
mechanism would then be started between the communicating partners,
which helps to ensure a stable and secure connection.

3. The last phase of connection establishment involves making the connection
available to the various network protocols. The actual closing of links is per-
formed by LCP. However, as each network connection (multiple network con-
nections are possible) closes, LCP may keep the physical connection open. PPP
164

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
does not specify a default time limit to wait before automatically closing con-
nections. Connections can be closed manually, or by setting a default wait time
165

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
DialUp IP Interfaces
Creating Dial-Up PPP interfaces on the BRICK basically involves three steps which
correspond to creating the system tables shown below. Many different options are
available when creating the respective table entries. An overview of the types of op-
tions available is shown in the diagram below.

• Create the PPP Partner Interface—biboPPPTable
• Identify the Partner’s ISDN Number—biboDialTable
• Create an IP Route for the Partner—ipRouteTable

Note that after creating the partner interface in the biboPPPTable the BRICK gener-
ates a new ifIndex value and automatically creates an entry in the ifTable. This ifIndex
is very important since it identifies a specific software interface; it must be used when
creating other system table entries to associate settings with the respective software in-
ferface.

An example SNMP shell session describing how to create a standard ISDN DialUp
PPP interface is shown below. Most of the available optional settings mentioned above
simply involve setting the respective variable to an appropriate non-default setting.

For a more detailed description of these optional settings and how to properly con-
figure them, please refer to the section DialUp Options.

Basic

Options:

ipRouteTablebiboPPPTable

➊ Create Partner
• WAN Encapsulation
• Multple Link Support
• Compression
• VJHeaderComp
• Authentification
• Callback

• Direction
• Address
• Screening
• ClosedUserGroup
• StackMask

• Metric
• Age

➌ Add IP Route

ifTable

biboDialTable

➋ ISDN Number

IfIndex=N

IfIndex=N

IfIndex=N
IfIndex=N

Steps:
166

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Creating a DialUp IP Interface

Step 1

The first step is to create the biboPPPTable entry. The only index variable in this table
is the Type field; it defines this partner as either an isdn_dialup or leased line part-
ner (Although leased line interfaces do appear here, leased-line partner interfaces can
not be created using the biboPPPTable.).

To create the table entry we can set this field and adjust the other entries as needed
(objects not explicitly set revert to their default values).

The new dialup interface created above displays standard (default) setting consist-
ing of the following characteristics:

Encapsulation ppp (See: WAN Encapsulation)
IP Address static IP Address (See: IP Address Settings)
Compression none (See: Compression)
Authentication none (See: Authentication)
MultiLinkSupport 1 B-channel (See: Mulitple Link Support)
ShortHold 20 seconds (See: Mulitple Link Support)

mybrick: admin> biboPPPType=isdn_dialup
05: biboPPPType.1.5(rw): isdn_dialup

mybrick : biboPPPTable > biboPPPTable
inx IfIndex(ro) Type(*rw) Encapsulation(-rw)

Keepalive(rw) Timeout(rw) Compression(rw)
Authentication(rw) AuthIdent(rw) AuthSecret(rw)
IpAddress(rw) RetryTime(rw) BlockTime(rw)
MaxRetries(rw) ShortHold(rw) InitConn(rw)
MaxConn(rw) MinConn(rw) Callback(rw)
Layer1Protocol(rw) LoginString(rw) VJHeaderComp(rw)
Layer2Mode(rw) DynShortHold LocalIdent

05 10006 isdn_dialup ppp
off 3000 none
none
static 4 300
5 20 1
1 1 disabled
data_64k disabled
auto 0
167

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Callback disabled (See: ISDN Callback)
Layer1Protocol data_64k (See: Layer 1 Protocol)
LoginString “empty” (See: Auto-Login)
VJHeaderComp disabled (See: Header Compression)
Layer2Mode auto (See: Layer2Mode)
LocalIdent “empty” (See: PPP Identification)

Step 2

Next we need to define the partner’s ISDN telephone number in the biboDialTable by
associating it with the IfIndex created in step 1. As shown in step 1 display the contents
of the biboPPPTable and locate the new interface index. The inx number for the new
table entry is displayed to the screen when the entry is created. In most cases this will
be the IfIndex field of the last table entry.

You may optionally verify this value is also present in the ifTable (in the Index field
of the last table entry). In the example below the ISDN number 555 is associated with
our new software interface 10006

Several options are also available in the Dial Table. Unless otherwise set, the follow-
ing default values are used.

Type isdn
A Type of isdn_spv is used for a semi-permanent link and

mybrick: biboDialTable > biboDialIfIndex=10006 biboDialNumber=555

06: biboDialIfIndex.10006.6(rw): 10006
06: biboDialNumber.10006.6(rw): "555"

mybrick: biboDialTable > biboDialTable

inx IfIndex(*rw) Type(-rw) Direction(rw)
Number(rw) Subaddress(rw) ClosedUserGroup(rw)
StkMask(rw) Screening(rw)

06 10006 isdn both
“555”
0xffffffff dont_care

mybrick : biboDialTable >
168

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
is used in connection with the German 1TR6 protocol.
Direction both

Direction may be limited to incoming or outgoing .
ClosedUserGoups

Not used by default but may be set for sites receiving
ISDN Closed User Groups services.

StkMask 0xffffffff means all available ISDN stacks.
Screening dont_care (See: ISDN Screening)

Step 3

Now we need to create the appropriate routing table entry for this partner. One, possi-
bly two, routing entries must be created in this step depending on whether a transfer
network is being used . The example below assumes no transfer network is being used.

Using our partner’s IP address (192.168.5.5) we add an indirect route to the partner’s
network. As before we need to associate this entry with the IfIndex for our partner in-
terface from step 1 (10006).

This route can also be created using the ifconfig command. (See: The ifconfig Com-
mand for command syntax).

mybrick: biboPPPTable > ipRouteIfIndex=10006 ipRouteDest=192.168.5.0
ipRouteType=indirect

03: ipRouteIfIndex.192.168.5.0.3(rw): 10006
03: ipRouteDest.192.168.5.0.3(rw): 192.168.5.0
03: ipRouteType.192.168.5.0.3(-rw): indirect

mybrick: ipRouteTable> ipRouteTable

inx Dest(*rw) IfIndex(rw) Metric1(rw) Metric2(rw)
Metric3(rw) Metric4(rw) NextHop(rw) Type(-rw)
Proto(ro) Age(rw) Mask(rw) Metric5(rw)
Info(ro)

 03 192.168.5.0 10006 0 -1
-1 -1 0.0.0.0 indirect
netmgmt 355 255.255.255.0 -1
.0.0

mybrick : ipRouteTable >
169

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
DialUp Options
This section describes the various options found in the biboPPPTable.

WAN Encapsulation

The biboPPPEncapsulation object defines the method used to encapsulation data
packets transmitted over the ISDN link. The ISDN partner must also support the spec-
ified method for connections to be established. The type of encapsulation selected here
also limits the types of protocols that can be routed over the interface. Possible encap-
sulation types and the protocols they support are shown below.

By default ppp encapsulation is used. Special information regarding some of the en-
capsulations (checkmarked in red) is contained below.
Note: In this table 5 means that the encapsulation may be configured but is not useful
in most cases.

biboPPPEncapsulation Supported Protocols

IP IPX Bridge X.25

ppp ✓ ✓ ✓

x25 ✓

x25_ppp ✓ ✓ ✓ ✓

ip_lapb ✓

ip_hdlc ✓

mpr_lapb ✓ ✓ ✓

mpr_hdlc ✓ ✓ ✓

frame_relay ✓ ✓ ✓ ✓

x31_bchan ✓

x75_ppp ✓ ✕ ✕

x75btx_ppp ✓ ✕ ✕

x25_nosig ✓
170

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Encapsulation: x75_ppp

x75_ppp encapsulation is used for asynchronous PPP over X.75 and is mainly used
for accessing commercial service providers such as CompuServe Online Services.
The biboPPPLoginString object is intended to be used with this encapsulation to au-
tomate the logon process with such service providers.

A typical logon string that might be used for logging onto Compuserve directly
is shown below:

“-d1 \n e: CIS\n ID: 12345,6789/go:pppconnect\n
word -d1 secret\n PPP”

Encapsulation: x75btx_ppp

x75btx_ppp encapsulation can be used to access CompuServe Online Services indi-
rectly via the German Telekom’s T-Online gateway. The biboPPPLoginString can be
set to include the appropriate login information to automate the login process to the
service provider.

A typical logon string that might be used for logging onto Compuserve via the T-
Online gateway is shown below:

“.n\ :000000 000327278259\n gabeseite 11 # # Name: CIS\n
ID:12345,6789/go:pppconnect\n wor -d1 secret\n PPP”

Encapsulation: x25_nosig

x25_nosig (no signalling) encapsulation uses the same encapsulation method as x25.
The only difference between the two is that with x25_nosig outgoing ISDN calls are
not signalled as X.25 calls but as a data transfer call (DSS :Bearer Service unrestricted
digital info without LLC).

Encapsulation: x25_ppp_opt

x25_ppp_opt ✓ ✓ ✓ ✓

biboPPPEncapsulation Supported Protocols

IP IPX Bridge X.25
171

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
x25_ppp_opt encapsulation provides a special case of the x25_ppp encapsulation. It
allows the BRICK to determine whether an incoming call is an X.25 call or a PPP call
even if no outband authentication (by CLID) is possible. This is done by scanning
the first incoming data packet.

Dial-in partners that can’t be authenticated outband (CLID) are then given an
X.25 connection via ISDN, or optionally a PPP connection, if they can be authenti-
cated inband by using CHAP or PAP.

Once the dial-up connection is established only one protocool,, X.25 or IP, may be
routed over the interface.

IP Address Settings

The biboPPPIpAddress object defines the BRICK’s relationship to this host regarding
its IP address. By default, static is used here. This assumes the PPP partner already
has a fixed IP address configured and the appropriate IP routes (using this address) are
already configured in the ipRouteTable.

This object can also be set to dynamic_server or dynamic_client which is explained
below.

dynamic_server This means the BRICK will attempt to assign this
partner a new IP address at connection time. The

next available IP address is retrieved from the biboPPPIpAssignTable.
If the dialup partner is configured to request a primary and/or secondary name-
server address, the BRICK responds by sending the current values of the biboAdm-
NameServer and biboAdmNameServ2 objects.

dynamic_client This means the BRICK will accept its own IP
address (for this dialup interface) from this

partner at connection time. If not already set the BRICK requests the primary and/
or secondary nameservers address. If the dialup partner provides this information
the BRICK sets the biboAdmNameServer and/or biboAdmNameServ2 objects.

Note: You will need one WAN partner definition for X.25, where the
x25_ppp_opt encapsulation is selected, and one or more for PPP
con nections (authentication via PAP, CHAP or RADIUS)
172

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Compression

The biboPPPCompression object defines the type of data compression (performed in
software) to use with this partner. The BRICK-XS, BRICK-XM, and V!CAS support
both STAC and V42bis data compression. On the BRICK-XL V42bis data compression
is supported in software; STAC compression will be performed in hardware via an ad-
ditional feature module available in a future release.

Data compression can only be used in connection with the Encapsulation settings
shown below. Although its possible to configure any Compression–Encapsulation
combination in the biboPPPTable, compression over the link will only be achieved
when configured as follows.

STAC compression is supported according to RFC 1974 and 1962 (PPP Stac LZS
Compression and PPP Compression Conrol Protocol respectively) standards, which, de-
pending on the data can increase performance variably. Typically, performance is in-
creased by a factor of 2 to 3; with the best case scenario at a factor of 30. The Stacker
LZS algorithm is developed by Hi/fn Inc.

STAC compresssion on the BRICK is also compatible with Cisco’s proprietary STAC
implementation which is automatically detected at connection time.

Authentication

The biboPPPAuthentication determines the type of authentification to use when es-
tablishing dialup connections with this partner. Three types of authentification meth-

biboPPPCompression biboPPPEncapsulation

stac ppp

stac x25_ppp

v42bis mpr_lapb

v42bis ip_lapb

Note: Due to heavy system requirements made by this algorithm only 4
instances of can be used simultaneously, for example,
4 partner connections @ 1 B-Channel each, OR
2 partner connections @ 2 B-Channels each, etc.
This limit does not affect the BRICK-XS or V!CAS products.
173

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ods are available here; chap , pap , and radius . The value both can also be set and
means that both PAP and CHAP should be used.

Mulitple Link Support

Multiple Link Support allows data connections to and from dialup ISDN partners to
be run over multiple channels concurrently. By dynamically allocating bandwidth (au-
tomatically openning and closing additional channels) greater throughtput rates can
be acheived when needed. For dialup ISDN connections this of course can lead to in-
creased costs.

Every 5 seconds the BRICK calculates the current throughput for each dialup inter-
face that is open. When throughput rises above a preset upper bound additional ISDN
channels are opened. If throughput drops below a specified level unneeded channels
are closed.

Using the following fields of the biboPPPTable the BRICK determines how multiple
link support should be handled for the specified partner.

InitConn InitConn defines the number of ISDN channels to initially
open when a connection is established with this partner.
By default 1 B-Channel is opened.

MaxConn MaxConn defines the maximum number of channels to
have open at any given time for connections to this partner.
By default the max number of chanels is 1.

MinConn MinConn defines the minimum number of channels to keep
open with this partner. If throughput drops, the number of
open channels will never become less than this value. The
only exception is when ShortHold (or DynShortHold;
see Short Hold) timer runs out. By default 1 channel is
always kept open.

Short Hold

Short Hold means that an existing ISDN connection can be automatically taken down
by waiting a specified (configurable) amount of time once the line becomes silent. Si-
lent here means that for the adjusted time no more data packets have been going out.
Data, which is generated by the BRICK itsself cyclicly, like for example RIP broadcasts
and KeepAlives are not considered.The BRICK supports two types of Short Hold, Stat-
174

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ic and Dynamic. Note that Dynamic Short Hold can only be used if the ISDN AOCD1

(advice of charge during the call) feature is activated.

Static Short Hold

Static Short Hold and involves setting the biboPPPShortHold variable to the
amount of time (in seconds) to wait before disconnecting the line. Though less flex-
ible than Dynamic method static short hod can always be used.

Dynamic Short Hold

Dynamic short hold provides greater flexibility in determining when the line is tak-
en down. Here the biboPPPDynShortHold variable is used. This object defines the
percentage of the current Charging Interval (sent by the ISDN and saved on the
BRICK in the biboPPPChargeInterval object) to wait before closing the link.

For example, if biboPPPDynShortHold is set to 50 (%), and the last measured bi-
boPPPChargeInterval was 120 seconds, the idle timer is set to 60 seconds. If the
ChargeInterval length changes (weekday/weekend, time of day, etc.) the idle timer
setting adjusts accordingly.

Recommended Dynamic Short Hold Settings:

• For interactive connections (e.g. telnet) you should specify a rather high Dy-
namic Short Hold percentage (e.g. 80-90) to avoid frequent disconnects due to
short periods of inactivity.

1. Called »Übermittlung der Tarifeinheiten während der Verbindung« in Germany

Connect

Charging Information

time

Disconnect

ChargeInterval = 120 (sec.)
DynShortHold = 50 (%)

Silence

$ $ $ $

Idle
Timer
175

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• For internet connections (WWW, http, etc.) you should specify a medium to
high Dynamic Short Hold percentage (e.g. 50-80) to avoid frequent disconnects
due to waiting periods.

• For data connections (e.g. ftp) you should specify a low Dynamic Short Hold
percentage (e.g. 10-40) to avoid unnecessarily waiting—and incurring charg-
es—once a transfer is complete.

Note: If configured, the Static Short Hold timer will always take
precedence over Dynamic Short Hold to avoid perma-
nent connections.
Make sure to set the Static Short Hold to a value greater
than the length of a charging unit if you want Dynamic
Short Hold to have any effect.
For example, in Germany there are different maximum
charging unit lengths for different tariff zones (City = 4
minutes, long distance calls = 2 minutes), so you can set
the Static Short Hold to 245 (>4 minutes) for City connec-
tions, and to 125 (>2 minutes) for long distance calls, to
avoid nullifying your Dynamic Short Hold settings.

Note: If you are using Dynamic Short Hold in connection with
channel bundling, please note that the channels are
released one by one, keeping open each channel until
shortly before the next advice of charge is expected for
this channel, thus maximizing the connection time with-
out further cost. The call will of course be disconnected
immediately if either side actively closes it.
176

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ISDN Callback

ISDN callback operation is supported in both directions on the BRICK. Using the bi-
boPPPCallback object ISDN callback can be configured separately for each PPP part-
ner in either enabled or expected mode.

Callback: expected

Expected mode operates as follows:

1. The BRICK places an initial call to the ISDN partner. The partner may be an-
other BRICK (configured for enabled mode) or an other system that supports
ISDN callback.

2. The remote partner closes the initial connection and returns the ISDN call;
hence callback is “expected” from this partner.

For the Initial Call at least one ISDN number (not containing wildcards) must be
present in the biboDialTable (Direction is either outgoing or both). The first
number found for this partner (Host-B above) is used to place the call.

For the Callback Call to be accepted by the receiving host an incoming number
entry must be present for calling partner in the biboDialTable. This entry may not
contain wildcard characters.

Callback: enabled

Enabled mode operates as follows:

1. The BRICK receives an ISDN call from this partner.

ISDN

Callback Call

Host-A Host-B

biboPPPTable

Partner=Host-B
Callback=expected

biboPPPTable

Partner=Host-A
Callback=enabled

Initial Call
177

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
2. After authenticating the caller (via Calling Line ID or CHAP/PAP) the BRICK
closes the initial connection and places a new call to the partner.

For the Initial Call to be acknowledged on the receiving host an incoming number
entry (Direction = incoming or both) must be present for the calling partner in the
biboDialTable and may not contain wildcard characters.

To place the Callback Call an outgoing number (not containing wildcards) must
be present for this partner in the biboDialTable (Direction is either outgoing or
both). If the Callback Call is not successful the BRICK waits a preset amount of time
and re-attempts callback up to biboPPPMaxRetries times (by default 5 attempts are
made).

Layer 1 Protocol

The biboPPPLayer1Protocol object defines the layer 1 protocol to use for connec-
tions to/from this dialup partner. By default data_64k is selected. The list of possible
layer 1 settings is shown below. .

Layer1Protocol Comment

data_64k Default setting.

data_56k For connections over ISDN lines limited to 56k Ibandwidth
(e.g., calls to/from North America).

modem The actual layer 1 connection parameters are negoti-
ated by the calling/receiving modemsa.

a.Only for products with internal modems (BRICK-XL, V!CAS and XS-Office).

modem_profile_1
–

modem_profile_8

The incoming/outgoing call to the specified partner uses
the modem settings defined in the respectve profile.
Refer to the mdmProfileTable.a

dovb Special setting for “Data over Voice Bearer”b

b.Used mainly in N.America to allow data transfers over voice circuits (i.e.,
the digital call is initially setup using voice signalling).

v110_1200
–

v110_38400

V.110 bit rate adaptation. Identifies the settings to use
(1200 baud, 8, N, 1 through 38400 baud, 8, N, 1) for calls
to this partner.
178

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Auto-Login

The biboPPPLoginString defines a text string that is used to automatically log into the
called system. This variable is only useful in connection with the x75_btx and x75_ppp
encapsulations (see Encapsulation: x75_ppp) for automating dialup connections with
CompuServe Online Services.

The Login String consists of special characters and alternating expect – send se-
quences separated by spaces. The first string detected as not being a secial character is
assumed to be an expect string. Currently the following special characters are recog-
nized.

A typical logon string that might be used for logging onto Compuserve directly
is shown below:

“-d1 \n e: CIS\n ID: 12345,6789/go:pppconnect\n
word -d1 secret\n PPP”

Once the initial connection is established this string would be used to:

Wait 1 second
transmit a carriage return

expect the string: “e:”
transmit “CIS” followed by a carriage return

expect the “ID:” string
transmit “12345,6789/go:pppconnect” and a carriage return

expect the string: “word”
wait 1 second

then transmit “secret” followed by a carriage return
expect the string “PPP”

The Compuserve UserID and Password shown above (12345,6789 and secret),
would have to be changed of course.

Special TAG Meaning

-d <number> Indicates a pause of <number> seconds.

\n Indicates transmit a carriage return.
179

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Header Compression

The biboPPPVJHeaderComp object defines whether Van Jacobson TCP/IP header
compression (VJHC) should be used with this partner. For IP capable interfaces VJ-
HeaderComp may be set to either enabled or disabled .

If the dialup partner supports header compression this option can be used to help
reduce the size of TCP/IP packets and provide improved performance (line efficiency).
VJHC is supported acording to RFC 1144.

Compression settings are negotiated at connection time during PP setup. If the
called party is does not support VJHC (or if disabled for this partner but the calling
party requests it) the link is still established, but without header compression enabled.
When negotiated sucessfully a system message is generated in the syslogTable (Sub-
ject=ppp, Level=info).

Layer2Mode

The biboPPPLayer2Mode object defines the mode to use at layer 2 for connections to
this dialup partner. For leased line partners the layer 2 mode set in the Type field of the
isdnChTable is used.

Layer2Mode is only relevant, if biboPPPEncapsulation involves a LAPB based pro-
tocol which is the case for the following settings:

x25 x25_ppp x25_ppp_opt ip_lapb
mpr_lapb x31_bchan x75_ppp x75btx_ppp
x25_nosig

By default Layer2Mode is set to auto . This means that the BRICK will adjust the its
layer 2 mode appropriately depending on the direction of the call for this partner. For
an incoming call from this partner the BRICK operates a DCE, when placing a call to
this partner the BRICK operates as DTE.

Setting this object to either dte or dce means the BRICK will always operate as DTE
or DCE respectively, regardless of the direction of the call. Also if dte or dce is set an
approriate entry in the biboDialTable must also be present.

if
biboPPPLayer2Mode =

if
biboDialDirection =

dte both or outgoing
180

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
PPP Identification

When PAP and/or CHAP authentication is used with the dial-up partner the BRICK
must identify itself with a special string known as the PPP ID.

When authentication is performed with this partner the BRICK sends the value of
the biboPPPLocalIdent varialbe. If this object is not set, the BRICK uses the contents
of the biboAdmLocalPPPIdent variable in the admin tabe.

Dual IP Address Interfaces
Normally each (physical) BRICK ethernet interface is assigned a single IP address. This
address can be seen in the BRICK’s ipAddrTable which lists the current IP address for
all BRICK interfaces.

A second IP address may be assigned to an ethernet interface by creating a direct
route in the ipRouteTable that points to the interface.

The ethernet interface for the BRICK in the diagram (assumed to already be as-
signed 192.168.5.1) could be assigned a second address by adding the following IP
route.

dce both or incoming

if
biboPPPLayer2Mode =

if
biboDialDirection =

192.168.5.2

192.168.5.1

10.9.9.7 10.9.9.8 192.168.5.3

ifindex=1000 10.9.9.9
181

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Both IP addresses will appear in the ipAddrTable.

The BRICK can now route between the two networks.

mybrick: system > ipRouteIfIndex=1000 ipRouteDest=10.9.9.0 ipRouteNextHop=10.9.9.9

01: ipRouteDest.10.9.9.0.2(rw): : 10.9.9.0
01: ipRouteNextHop.10.9.9.0.2(rw): : 10.9.9.9
01: ipRouteIfIndex.10.9.9.0.2(rw): : 1000

mybrick: ipRouteTable> ipRouteTable

inx Dest(*rw) IfIndex(rw) Metric1(rw) Metric2(rw)
Metric3(rw) Metric4(rw) NextHop(rw) Type(-rw)
Proto(ro) Age(rw) Mask(rw) Metric5(rw)
Info(ro)

01 10.0.0.0 1000 0 -1
-1 -1 10.9.9.9 direct
netmgmt 5 255.0.0.0 -1
.0.0

mybrick : ipRouteTable >

mybrick: ipRouteTable > ipAddrTable

inx Addr(*ro) IfIndex(ro) NetMask(ro) BcastAddr(ro)
ReasmMaxSize(ro)

00 192.168.5.1 1000 255.255.255.0 1
65535

01 10.9.9.9 1000 255.0.0.0 1
65535

mybrick : ipAddrTable >
182

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
IP Routing on the BRICK
The BRICK’s IP routing table is contained in the ipRouteTable. It contains, among other
information, a list of destination addresses (host or network) and gateway addresses
to be used when routing IP packets to those destinations. When the routing table is
kept current, the BRICK is prepared to make intelligent decisions as to where to route
incoming packets.

Before any IP packets can be routed the BRICK first determine:

1. The Destination IP Address (DEST_IP_ADDR) from the IP packet.
2. The Destination Network (DEST_ADDR) from DEST_IP_ADDR.
3. Whether a default route exists.

The BRICK can then decide which interface to route the packet over. To make this
decision the BRICK uses a rather complicated internal routing algorithm. The general
routing algorithm might proceed as shown below. Routing involves doing this for each
packet that arriveing packet.

No

No

No

Send packet to host at Dest_IP_Addr.

Send packet to respective Gateway.

Send packet to respective Gateway.

Send packet over the default route.Yes

Yes

Yes

Yes

Is there a
Default Route

in Route Table?

Is
DEST_IP_ADDR

on a Local
network?

Have a
host route for

DEST_IP_ADDR in

Is
DEST_IP_ADDR

within range of an

Route Table?

available Network
Route?
Getting StartedLos Geht’s User’s Guide
183

BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Extended IP Routing
Most routing decisions are based solely on a packet’s destination address, Extended IP
routing allows you to route IP traffic based on additional information. Extended routes
are configured in the ipExtRtTable. Each extended route table entry defines a separate
route which can be separately or jointly based on:

• Contents of the IP packet header.
• The source interface the packet arrived on.
• The current state of a BRICK interface (normally a dialup interface).

Table Field Global Meaning

C
o

n
te

n
ts

 o
f

IP
 H

e
a

d
e

r.

Protocol dont_verify Protocol field of IP header

SrcAddr 0.0.0.0 Source Address field of IP header.

SrcMask 0.0.0.0 Used with SrcAddr.

SrcPort -1 Source Port field of IP header

SrcPortRange -1 If not = -1 last number of range of
ports, starting from SrcPort.

DstAddr 0.0.0.0 Destination Addr field of IP header

DstAddrMask 0.0.0.0 Used together with DstAddr.

DstPort -1 Destination Port field of IP header.

DstPortRange -1 Used together with DstPort field.

Tos 0 Type of Service field of IP header.

TosMask 0 Type of Service field of IP header.

BR
IC

K
In

te
rfa

c
e DstIfMode - The state of the DstIfIndex.

SrcIfIndex -0 The interface to route packet to.
184

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Route Priority
When routing IP packets, the BRICK always checks for extended routes first. If the
ipExtRtTable is empty, or a matching entry is not found, the ipRouteTable is consulted.

1. First check ipExtRtTable; if a route is found, route packet, otherwise
2. Check ipRouteTable.

Configuring Extended Routes
For example the two LANs shown below could be connected via an ISDN basic rate
interface. For telnet sessions we might want to take advantage of volume-based charg-
ing of X.31 (X.25 in the D-channel) and avoid the much higher costs for ISDN dialup
connections. All other IP traffic could continue to use the dialup ISDN link.

Presetting

1. Each BRICK needs to be configured to allow for normal routing via our ISDN
dialup link (dialup1, ifindex=10001).

2. Next, we’ll need to create an MPX25 (mpx1, ifindex=20001) interface to allow
IP traffic to be routed over X.25.

NOTE: If more that one route is found in a routing table, the route with the
lowest metric value specified in the Metric1 field is used. If multiple
routes are found with the same metric, it is not possible to deter-
mine which route will be used.
The Metric2, Metric3, Metric4, and Metric5 fields are not used.

192.168.20.0192.168.5.0

ISDN dialup

ISDN via
X.31

(D-channel)BRICK1 BRICK2
185

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Configuration

Since IP is already routed between the LANs using our dialup interface, we only need
to filter out the telnet traffic. This can be done using the Protocol, SrcPort, and DstPort
variables in the ipExtRtTable.

Step 1
For BRICK1 the extended IP routes would be added as follows. The first route is for IP
packets destined for hosts on network 192.168.20.0 with a source IP port of 23. This is
for outgoing telnet sessions.
186

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
The second route is for IP packets destined for hosts on the remote network, with a
destination IP port of 23. This is for the incoming telnet sessions.

brick1: system > ipExtRtTable

inx Protocol(*rw) SrcIfIndex(rw) SrcAddr(rw) SrcMask(rw)
SrcPort(rw) SrcPortRange(rw) DstAddr(rw) DstMask(rw)
DstPort(rw) DstPortRange(rw) Tos(rw) TosMask(rw)
DstIfMode(rw) DstIfIndex(rw) NextHop(rw) Type(-rw)
Metric1(rw) Metric2(rw) Metric3(rw) Metric4(rw)
Metric5(rw) Proto(rw) Age(rw)

brick1: ipExtRtTable> Protocol=tcp SrcPort=23 DstAddr=192.168.20.0 DstIfIndex=20001

brick1: ipExtRtTable> Protocol=tcp DstPort=23 DstAddr=192.168.20.0 DstIfIndex=20001

inxProtocol(*rw) SrcIfIndex(rw) SrcAddr(rw) SrcMask(rw)
SrcPort(rw) SrcPortRange(rw) DstAddr(rw) DstMask(rw)
DstPort(rw) DstPortRange(rw) Tos(rw) TosMask(rw)
DstIfMode(rw) DstIfIndex(rw) NextHop(rw) Type(-rw)
Metric1(rw) Metric2(rw) Metric3(rw) Metric4(rw)
Metric5(rw) Proto(rw) Age(rw)

00 tcp 0 0.0.0.0 0.0.0.0
23 -1 192.168.20.0 255.255.255.0
-1 -1 0 0
dialup_wait 20001 0.0.0.0 indirect
0 0 0 0
0 netmgmt 0 00:20:25.00

 01 tcp 0 0.0.0.0 0.0.0.0
-1 -1 192.168.20.0 255.255.255.0
23 -1 0 0
dialup_wait 20001 0.0.0.0 indirect
0 0 0 0
0 netmgmt 0 00:20:26.00

brick1 : ipExtRtTable >
187

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Step 2
The same extended routes would also be added to BRICK2. The ifIndex for our MPX25
partner (BRICK1) is assumed to be 20003 on BRICK2. Again the first route is for the
outgoing telnet sessions, the second is for the incoming sessions.

Additional Options

A range of ports can also be specified using the SrcPort and SrcPortRange variables
together. SrcPort specifies the first port number in the range, SrcPortRange defines the
last port in the range. Both ports are included in the range. For example, the extended
routes in the above examples could have looked like this:

Protocol=tcp SrcPort=21 SrcPortRange=23
DstAddr=192.168.5.0 DstIfIndex=20003

brick2 : ipExtRtTable > Protocol=tcp SrcPort=23 DstAddr=192.168.5.0 DstIfIndex=20003

brick2 : ipExtRtTable > Protocol=tcp DstPort=23 DstAddr=192.168.5.0 DstIfIndex=20003

brick2 : ipExtRtTable > ipExtRtTable

inxProtocol(*rw) SrcIfIndex(rw) SrcAddr(rw) SrcMask(rw)
SrcPort(rw) SrcPortRange(rw) DstAddr(rw) DstMask(rw)
DstPort(rw) DstPortRange(rw) Tos(rw) TosMask(rw)
DstIfMode(rw) DstIfIndex(rw) NextHop(rw) Type(-rw)
Metric1(rw) Metric2(rw) Metric3(rw) Metric4(rw)
Metric5(rw) Proto(rw) Age(rw)

00 tcp 0 0.0.0.0 0.0.0.0
23 -1 192.168.5.0 255.255.255.0
-1 -1 0 0
dialup_wait 20003 0.0.0.0 indirect
0 0 0 0
0 netmgmt 0 00:20:25.00

 01 tcp 0 0.0.0.0 0.0.0.0
-1 -1 192.168.5.0 255.255.255.0
23 -1 0 0
dialup_wait 20003 0.0.0.0 indirect
0 0 0 0
0 netmgmt 0 00:20:26.00

brick2 : ipExtRtTable > ipExtRtTable
188

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Protocol=tcp DstPort=21 DstPortRange=23
DstAddr=192.168.5.0 DstIfIndex=20003

allowing ftp and telnet sessions (IP ports 21 and 23) to be routed over a specific in-
terface.
189

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
BOOTP and DHCP
BootP and DHCP (Dynamic Host Configuration Protocol) are two methods that are
commonly used by a host to retrieve important configuration information from a re-
mote host on the LAN. For diskless workstations this might be it’s IP address and net-
mask but could also include other information such as a nameserver’s address to use.
The BRICK supports both protocols.

BootP The BRICK can operate as a BootP Relay Agent. This means
BootP requests received over the BRICK’s interfaces are forward-
ed to the BootP Server (biboAdmBootpRelayServer) if one exists.
To configure a Relay Agent see BootP Relay Agent Settings.

DHCP The BRICK can also operate as a DHCP Server. DHCP is intend-
ed to make maintenance of remote and/or diskless workstations
easier. It is also commonly used on Windows based systems. The
major benefit of DHCP is that it gives the network manager the
ability to manage a limited number of IP addresses among
several hosts. The DHCP server on the BRICK provides the
extra benefits of accessibility.
To configure a DHCP Server see DHCP Server Setting.

NOTE: The BRICK can retrieve it’s own configuration informa-
tion at boot time via a BootP server. See the section
BOOT Options on the BRICK, in Chapter 4 System
Administration on the BRICK.

NOTE: BootP and DHCP use the same message format. When a
DHCP message is received on the BRICK but the DHCP server is
NOT configured the DHCP request is automatically forwarded to
the BootP server if one is configured.
Although BootP and DHCP use the same message format, they
are not completely compatible. Clients that support BootP can’t
be configured via the BRICK’s DHCP server.
190

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
BootP Relay Agent Settings
The BRICK forwards all BootP requests received over it’s LAN interfaces to the host
defined in the biboAdmBootpRelayServer field of the admin table.

BootP Relaying for this example would be configured as follows:

Step 1

First, configure the IP address for the BootP Server in the admin table.

mybrick: > admin
...
biboAdmBootpRelayServer(rw): 0.0.0.0
...
mybrick: admin> biboAdmBootpRelayServer=192.168.5.5
biboAdmBootpRelayServer(rw): 192.168.5.5

mybrick: admin>

BOOTP Relay Agent

BootP
Client

192.168.5.5

BootP
Server

ISDNRequest
IP Address

Response
192.168.6.6

(192.168.6.6)
191

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Step 2

Before the BRICK can begin forwarding requests to this host a partner interface must
be created in the biboPPPTable. Below we create a standard dial-up interface for the
server.

Step 3

Don’t forget to add the telephone number to the BRICK’s Dial table.

For information on other options when creating partner interfaces, refer to section
Creating a DialUp IP Interface.

mybrick: admin> biboPPPType=isdn_dialup

05: biboPPPType.1.5(rw): isdn_dialup

mybrick : biboPPPTable > biboPPPTable

inx IfIndex(ro) Type(*rw) Encapsulation(-rw)
Keepalive(rw) Timeout(rw) Compression(rw)
Authentication(rw) AuthIdent(rw) AuthSecret(rw)
IpAddress(rw) RetryTime(rw) BlockTime(rw)
MaxRetries(rw) ShortHold(rw) InitConn(rw)
MaxConn(rw) MinConn(rw) Callback(rw)
Layer1Protocol(rw) LoginString(rw)

05 10006 isdn_dialup ppp
off 3000 none
none
static 4 300
5 20 1
1 1 disabled
data_64k

mybrick: biboPPPTable >

mybrick: biboPPPTable > biboDialIfIndex=10006 biboDialNumber=555

06: biboDialIfIndex.10006.6(rw): 10006
06: biboDialNumber.10006.6(rw): "555"

mybrick : biboDialTable >
192

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
DHCP Server Setting
DHCP on the BRICK consists of the ipDhcpTable and ipDhcpInUseTable.

ipDhcpTable Used to define a pool of addresses the BRICK will use
when assigning IP addresses to DHCP clients.
Each entry in the table defines a range of addresses to
use for requests received on the respective interface.

ipDhcpInUseTableDisplays which addresses are in use (by host’s MAC
address) as well the address’ expire time.

In Setup Tool the Configuration of DHCP can be entered in the DHCP submenu of the
IP menu.

A range of 13 addresses for the BRICK’s first LAN interface could be configured as
follows:

mybrick: ipDhcpTable> IfIndex=1000 First=192.168.5.80 Range=9
...
mybrick: ipDhcpTable> IfIndex=1000 First=192.168.5.90 Range=4
...
mybrick: ipDhcpTable> ipDhcpTable

inx IfIndex(*ro) State(-rw) First(rw) Range (rw)
Lease(rw) InUse(ro)

00 1000 on 192.168.5.80 9
15 0

01 1000 on 192.168.5.90 4
15 0

mybrick : ipDhcpTable >
193

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
When an address is assigned, the BRICK keeps track of the address’ availability in
the ipDhcpInUseTable.

Note that 192.168.5.82 wasn’t assigned above. The BRICK verifies an address is
available via ping: ICMP requests/reply before assigning an address from the DHCP
tables. Since a reboot results in the loss of the audit trail of assigned addresses this is
done to avoid duplicate assigments.

According to DHCP, the server may provide clients with additional information
such as netmasks, nameserver and other addresses, etc. The table shown below, lists
the types of information the BRICK currently supports.

mybrick: ipDhcpTable> ipDhcpInUseTable

inx Address(*ro) Phys(ro) Expires(ro)

00 192.168.5.80 8:0:20:19:ef:eb 30/06/97 17:33:21
01 192.168.5.81 8:0:20:a3:b3f:9 30/06/97 17:36:59
02 192.168.5.83 8:0:20:12:4f:9a 30/06/97 18:06:19

mybrick : ipDhcpInUseTable >

DHCP Request Tag Retrieved from:

IP_ADDRESS ipDhcpTable (amd ipDhcpInUseTable)
(the next available address, see above)

SUBNET_MASK ipRouteTable

GATEWAY ipRouteTable
IP address of the interface the request was received on.

BROADCAST_ADDR ipRouteTable
(using default route: Dest |~ Mask = broadcast address)

TIME_SERVER biboAdmTimeServer

NAME_SERVER biboAdmNameServer, biboAdmNameServ2,
biboAdmWINS1or biboAdmWIN2, see below.

DOMAIN_NAME biboAdmDomainName

LOG_SERVER biboAdmLogHostTable
194

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
The variables biboAdmNameServer, biboAdmNameServ2, biboAdmWNS1 and
biboAdmWNS2 can also be configured in Setup Tool in the Static submenu of the IP
menu. Another way to get the values for these variables is to receive them via PPP like
described below.

DNS and WINS (NBNS) Relay

Client messages that include requests for the domain name server or the NetBios serv-
er’s address are handled as follows.

1. If biboAdmNameServer/biboAdmWNS1 is set (≠ 0.0.0.0) send IP address, oth-
erwise

2. If biboAdmNameServ2/biboAdmWNS2 is set (≠ 0.0.0.0) send IP address, other-
wise

3. Send BRICK’s IP address as NAME_SERVER and
attempt to resolve the name server’s address dynamically (see below) upon re-
ception of first name resolution request.

HOST_NAME ipDhcpTable
The client’s IP address (IP_ADDRESS) is sent as a text string.

DHCP Request Tag Retrieved from:
195

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Dynamic Name Server Address Resolution

• The BRICK parses the biboPPPTable for partners that support DNS/WINS ne-
gotiation; i.e., DNSNegotiation is enabled and the IpAddress field is set to
dynamic_client or DNSNegotiation is set to dynamic_client.

• While attempting to configure it’s DNS server, DNS requests are answered
with a “Server temporarily down” resp. “Server Failure”message.

• WAN partners are only called once.
• After successful DNS Address negotiation, the BRICK can inform subsequent

DHCP requests for a name server with its newly configured address. See the
section on DNS and WINS (NBNS) Negotiation over PPP, for information on
dynamic DNS address negotiation.

Host A

time

DHCP Clients

Host B

Request
NAME_SERVER

Response
192.168.5.1

192.168.5.1

resolve
192.168.99.99

ISDNDynamic
Resolution

Request
NAME_SERVER

Response
192.168.12.1

192.168.12.1

192.168.6.1

192.168.0.1

IpAddress =
dynamic_client

“Server
 temporarily down ...”

biboPPPTable

DHCP Server

8:a3:9:e:2:4f
192.168.99.99
196

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• Clients that were given the BRICK’s address as name server can’t be informed
of a new address. For these hosts, the BRICK simply continues relaying reso-
lution requests to the actual DNS/WINS server.

DNS and WINS Addresses over PPP
DNS and WINS (NBNS = NetBios Name Server) negotiation can be configured on a per
partner basis and allow to better control how (and from which partners) the BRICK
will negotiate DNS and WINS settings.

Each partner can be separately configured so that the BRICK either

• accepts DNS/WINS settings from the partner,
• offers DNS/WINS settings to this partner
• or does not negotiate DNS/WINS settings with the partner.

Together the MIB variables biboPPPIpAddress and biboPPPDNSNegotiation control
how DNS/WINS Negotiation is handeled with the respective PPP partner.

biboPPPDNSNegotiation The type of negotiation to perform with
this client.
Default value: enabled
Possible values include:
disabled (1), enabled (2),
dynamic_client(3), dynamic_server (4)

biboPPPIpAddress The type of IP address for this dial-up
partner.
Possible values include:
static (1), dynamic_server (2),
dynamic_client (3)

Th table below illustrates the effect of using this two variables to control DNS and
WINS negotiation:

Variable Settings Negotiation Handling

biboPPPDNSNegotiation:
disabled

No negotiation is performed.
197

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
In Setup Tool the values of the variables biboPPPDNSNegotiation and biboPPPIpAd-
dress can also be configured:

When you configure a WAN Partner, you will find the item Dynamic name Server
Negotiation in the Advanced submenu of the WAN partner’s IP menu. This item cor-
responds to the variable biboPPPDNSNegotiation.

The value of the biboPPPIpAddress variable is configured via the item IP Transit
Network in the WAN partner’s IP menu. Here the settings yes and no correspond to
the variable’s value static and dynamic client to dynamic_client, the same dynamic
server to dynamic_server.

biboPPPDNSNegotiation:
enabled
and
biboPPPIpAddress:
dynamic_client

DNS resp. WINS addresses are requested from
the remote side.
Correspondingly the variables biboAdm-
NameServer, biboAdmNameServ2,
biboAdmWINS1or biboAdmWIN2 are overwrit-
ten.

biboPPPDNSNegotiation:
enabled
and
biboPPPIpAddress:
dynamic_server
or
biboPPPIpAddress:
static

DNS resp. WINS addresses are sent to the
remote side, when requested, as far as they
are configured.
The addresses are taken from the variables
biboAdmNameServer, biboAdmNameServ2,
biboAdmWINS1or biboAdmWIN2.

biboPPPDNSNegotiation:
dynamic_client

DNS resp. WINS addresses are requested from
the remote side.
Correspondingly the variables biboAdm-
NameServer, biboAdmNameServ2,
biboAdmWINS1or biboAdmWIN2 are overwrit-
ten.

biboPPPDNSNegotiation:
dynamic_server

DNS resp. WINS addresses are sent to the
remote side, when requested, as far as they
are configured.
The addresses are taken from the variables
biboAdmNameServer, biboAdmNameServ2,
biboAdmWINS1or biboAdmWIN2.

Variable Settings Negotiation Handling
198

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Dynamic IP Address Assignment
As the name suggests, Dynamic IP Address Assignment is a method used to configure
a host’s IP address dynamically. It’s generally based on a client-server system; clients
ask for an address and the server assigns one.

Although it’s used for a variety of reasons by different sites, it’s primary benefit is
that it allows for efficient (and centralized) management of a limited number of IP ad-
dresses. Internet service providers commonly use it to assign IP addresses to dial-in
hosts at connections time.

Dynamic IP Address Assignment on the BRICK is used for hosts that connect to the
BRICK via ISDN; the BRICK can operate as a Server or as a Client for such hosts. Con-
figuring Server Mode or Client Mode is described below.

Server Mode
It is possible to define separate IP Address Pools for dynamic IP address assigments.
For Internet Service Providers (ISP) and other sites with many dial-in accounts, using
IP address pools is convenient for defining separate user groups. One might assign “of-
ficial” addresses from one pool 1 for special accounts, and assign “non-official” ad-
dresses from pool 2 for private accounts.

In server mode, the BRICK assigns an IP address to a host (the client) at connection
time from the Pool (Pool ID) defined for the respective WAN Partner. When dynami-
cally assigning an IP address to a dial-in client the static IP address respectively the
Pool from which the address is retrieved are determined in the following order.

1. Assigning a Static IP Address
When there exists an entry in the ipRouteTable for the dial-in client, where
ipRouteMask is set to a host route (= 255.255.255.255) and ipRouteType has the
value direct, in this case the IP address stored in the variable ipRouteDest of
this routing entry is taken to be assigned for this WAN partner.
If caller can’t be authenticated locally via the MIB, RADIUS server(s) are con-
tacted. If a server authenticates the caller, and there is a User-Record entry
BinTec-ipRouteTable=”ipRouteMask=255.255.255.255

NOTE: DHCP can also be used to provide hosts with an IP address
(and other information, see: BOOTP and DHCP) but is mainly used
for assigning IP addresses to hosts on the BRICK’s LAN.
199

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ipRouteType=direct
ipRouteDest= x”

the IP address stored in the variable ipRouteDest of this entry is taken to be as-
signed for this WAN partner.

2. Assigning an IP Address from an Address Pool
When the procedure described under 1.) was not successful, the IP address is
assigned from the Pools.
Once the caller is identified (either inband or outband), the WAN partner’s bi-
boPPPTable entry is compared. If the IPAddress field = “dynamic_server”
AND an address is available from the pool identified by the PoolId field, then
a free address is assigned.
If caller can’t be authenticated locally via the MIB, RADIUS server(s) are con-
tacted. If a server authenticates the callerand there is a User-Record entry
BinTec-biboPPPTable=”biboPPPIpAddress=dynamic_server”, the pool ID is
determined from the User-Record entry BinTec-biboPPPTable=”biboPPPIp-
PoolId=x”.

For detailed description of individual system table fields please refer to the BIAN-
CA/BRICK MIB Reference on the accompanying Companion CD or at BinTec’s WWW
site.

Example Configuration of an IP Address Pools via Setup Tool

A. Dial-In Partner without RADIUS

First, create/modify a Pool ID to contain IP addresses that will be available for assign-
ment at connect time.

Pool ID 1
Number 10.5.5.5
Number of Consecutive Addresses 5

Here you’ll need to set:

IP DYNAMIC IP ADDRESS ADD

ADDWAN PARTNER
200

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

http://www.bintec.de/download/brick/doku/mibref/index.html

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Partner Name test
Encapsulation PPP
Compression none
Encryption none
Calling Line ID no

Then, in the submenu configure the BRICK as a Dynamic IP Address server for
this partner.

IP Transit Network dynamic_server

In the submenu define the Pool ID

IP Address Pool 1

B. Dial-In Partner with RADIUS server

Next, modify a Pool ID to contain IP addresses that will be available for assignment at
connect time.

Pool ID 2
Number 192.168.80.20
Number of Consecutive Addresses 20

Then you must define the following entry in the User-Record of the RADIUS server:

BinTec-biboPPPTable=”biboPPPIpPoolId=2”

Example Configuration of IP Address Pools via SNMP Shell

A. Dial-In Partner without RADIUS

1. Create an IP address pool in the biboPPPIpAssignTable.

brick:> biboPPPIpAssignAddress=10.5.5.5 biboPPPIpAssignPoolId=1 biboPPPIpAssignRange=5

IP

ADVANCED SETTINGS

IP DYNAMIC IP ADDRESS ADD
201

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
2. Set the WAN partner in biboPPPTable to use Pool ID.
Assuming entry 4 is the existing WAN partner we want to configure for Dy-
namic IP address assignment.

B. Dial-In Partner with RADIUS server

1. Create an IP Address pool in the biboPPPIpAssignTable.

2. Define the following entry in the User-record of the RADIUS server:

BinTec-biboPPPTable=”biboPPPIpPoolId=2”

3. Once the caller is authenticated via a RADIUS server a temporary biboPPPT-
able entry is generated. The PoolId field for this entry is determined by the
contents of the User-Record discussed above.

Overlapping Address Pools

Although it’s legally possible to define IP address pools that overlap (as shown below)
the BRICK will not assign an address twice.

The biboIpInUseTable is consulted for this purpose. The biboIpInUseTable shows
all IP addresses, which are dynamically assigned to WAN partners or reserved for
WAN partners and is continously updated.

brick:> biboPPPIpPoolId:4=1 biboPPPIpAddress:4=dynamic_server

brick:> biboPPPIpAssignAddress=192.168.80.20 biboPPPIpAssignPoolId=2
biboPPPIpAssignRange=20
202

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Example for overlapping Address Pools:

With the biboPPPIpAssignTable shown above, only four IP addresses could actual-
ly be used at any given time.

An address pool may be removed from the table at any time by assigning delete
to the respective State object.

Reserved IP Addresses

In the biboIpInUseTable all IP addresses currently assigned or reserved to a partner are
shown.

After a disconnect the State of the entry is set to reserved and the variable PPPIPI-
nUseAge is reset to 0. From then on it is tried to reserve the IP address for the partner
for a maximum of 3600 s.

When within this time the same partner calls again, the BRICK tries to assign the re-
spective address again. The assignement is made via the variable PPPIpInUseIdent.

When a partner dials in and no reserved IP address is available, the next step is to
assign a free IP address from the specified pool. When no more free IP address is avail-
able from the pool, the oldest of the IP addresses, reserved for other partners, is used.

brick: biboPPPIpAssignTable> biboPPPIpAssignTable

inx Address(*rw) State(-rw) PoolId(rw) Range(rw)

0 10.5.5.1 unused 0 2
1 10.5.5.2 unused 1 2
2 10.5.5.3 unused 2 2

brick: biboPPPIpAssignTable>
203

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Client Mode
In client mode, the BRICK can be configured to accept its own IP address at connection
time from a dial-up PPP partner at connection time. The BRICK will use this IP address
as the local side of the dialup connection as long as the connection is established.

Upon receiving an IP address from the dialup (server) host, the BRICK will automat-
ically create an IP route to allow hosts on the LAN to access networks via the dialup
connection. The route is also automatically removed when the connection is closed.

Routing with OSPF
OSPF on the BRICK consists of 11 system tables and the ospfmon application. An over-
view of the 10 OSPF tables (from the ospf group) and the ipImportTable (ip group)
from the SNMP shell are shown below.

OSPF System Tables
• ospfGeneralGroup

Global settings used by the OSPF protocol including the ospfAdminStat object
(must be enabled to use OSPF).

• ospfStatTable
Status information about Link-State advertisements and OSPF protocol pack-
ets that have been sent or received.

• ospfErr
Status information about bad OSPF packets (bad checksum, incorrect field val-
ues, etc.) that have been received.

Dynamic
IP Address

Internet
Service

Client Mode Provider

ISDN Internet

IP Address

Request

10.6.5.4 10.6.5.1
IP Address

192.168.5.5
204

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• ospfAreaTable
Identifies OSPF areas the BRICK’s interfaces are assigned to and logs statistics
for each.

• ospfLsdbTable
Contains header information from the BRICK’s Link State DB.

• ospfIfTable
Lists all OSPF interfaces, their current state, and settings specific to that OSPF
interface.

• ospfIfMetricTable
Lists the actual metric values being used for each OSPF interface.

• ospfNbrTable
Lists the neighbor routers that have been identified via then HELLO protocol
and their respective OSPF states.

• ospfAreaAggregateTable
Specifies IP address ranges for route condensation (also called: inter-area route
summarization) among areas.

• ospfStubAreaTable
Generates a default route for Stub Areas.

• ipImportTable
Specifies how routes from one routing protocol are imported into another rout-
ing protocol.

Example OSPF Installation
A typical network installation showing how OSPF could be put to use is shown in the
diagram on the following page. Highlights for this setup are shown below. Following
the diagram is a Configuration Overview and following that a detailed listing of the
configuration steps is povided for each router.

Area 11.0.0.0 (stub area)

• Since the remote LAN in Area 11.0.0.0 is linked to the
backbone via an ISDN dialup link this area is config
ured as a stub area. This means that external routing in
formation advertisements won’t flow into this area.
The default route for this area is provided by the router
BRICK-XL.
205

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• Because OSPF on the BRICK includes support for Demand Circuits (RFC 1793)
the dialup link is only opened when changes in routing information must be
propagated.

Area 0.0.0.0 (backbone)

• Area 0.0.0.0 is the backbone of the Autonomous System. The router at BRICK-
XL will provide the default route for the entire AS and a default route for Area
11.0.0.0.

Area 10.0.0.0

• Area 10.0.0.0 is connected to the backbone via the border router BRICK-XM.
Since this is the only link between networks in this area and any external net-
works (such as the Internet) BRICK-XM will provide Summary Links to rout-
ers in other areas. This means that routing information about networks in Area
10.0.0.0 will be combined (or aggregated) into a single advertisement. This
206

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
lessens the amount of traffic on the backbone and keeps the size of the link
state database for area 0.0.0.0 small.

Configuration Overview

All BRICKs:

1. A valid OSPF license must be installed. This can be added to the
biboAdmLicenseTable or from Setup Tool’s limenu.

2. OSPF must be enabled by setting ospfAdminStat to enabled , or from Setup
Tool’s ipmenu.

10.0.2.0

255.255.255.0

10.0.1.0

255.255.255.0

192.168.30.0
255.255.255.128

Area 10.0.0.0

192.168.40.0
255.255.255.128

11.0.0.0

255.255.255.0

Area 11.0.0.0

Area 0.0.0.0

en1

en2
en3

en1
en2

12.0.0.0

ISDN

(backbone)

BRICK-XS

BRICK-XM

BRICK-XL

(Stub Area)

Def. Route
for AS

Def. Route
for Area

.1

.1

en1
.1

.1.1

Autonomous System 3000

LICENSES

IP STATIC SETTINGSOSPF
Getting StartedLos Geht’s
 User’s Guide BRICKware
207

Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
BRICK-XL Overview (details):

1. Create the dial-up partner interface to BRICK-XS.
2. Have BRICK-XL advertise the default route for the AS.
3. Create the Area entry for Area 11.0.0.0.
4. Assign the new dialup partner interface to Area 11.0.0.0 and set the interface to

active.
5. Verify ethernet interfaces en1 and en2 are assigned to Area 0.0.0.0 and set both

interfaces to active.

BRICK-XS Overview (details):

1. Create the dial-up partner interface to BRICK-XL.
2. Create the Area entry for Area 11.0.0.0.
3. Assign the ethernet interface (en1) to Area 11.0.0.0 and set the interface to ac-

tive.
4. Assign the new dial-up interface to Area 0.0.0.0 and set the interface to active.

BRICK-XM Overview (details):

1. Create the Area entry for Area 10.0.0.0.
2. Assign ethernet interfaces en1 and en2 to Area 10.0.0.0 and set both interfaces

to active.
3. Verify ethernet interface en3 is assigned to Area 11.0.0.0 and set the interface to

active.
4. Create the OSPF aggregate for the LANs attached to en1 and en2 to reduce the

routing traffic sent over en3.
208

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Configuration Steps for BRICK-XL

1. Assuming an OSPF license is installed and OSPF has been enabled the partner
interface to BRICK-XS should be created. Note that our example uses a transfer
network (network 12.0.0.0).

2. Since BRICK-XL should advertise the default route for the AS set this field to
yes in .

3. In the menu create an entry for Area 11.0.0.0.
Define this area as a Stub Area and have BRICK-XL generate the default route
for this area.

BIANCA/BRICK-XL Setup Tool BinTec Communications AG
[IP][OSPF][STATIC]: OSPF Static Settings BRICK-XL

OSPF enabled
Generate Default Route for the AS yes

SAVE CANCEL

Enter IP address (a.b.c.d or resolvable hostname)

BIANCA/BRICK-XL Setup Tool BinTec Communications AG
[IP][OSPF][AREA][ADD]: Area Configuration BRICK-XL

Area ID 11.0.0.0

Import external routes no
Import summary routes no
Create area default route (only ABR) yes

Area Ranges >

SAVE CANCEL

Enter IP address (a.b.c.d or resolvable hostname)

IP OSPF STATIC SETTINGS

IP AREASOSPF
209

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
4. In the ipmenu locate the dialup interface
entry created in step 1 and hit enter to edit the settings.

Set the Admin Status to active and assign it to Area 11.0.0.0 (or the area created
in step 3) and select .

By default, dial-up interfaces are set to passive in the Admin Status field.

5. In menu verify the ethernet interfaces en1
and en2 are assigned to the backbone, (Area 0.0.0.0 which is the default area).

Set the Admin Status to active and assign it to Area 11.0.0.0 (or the value from
step 2) and select

BIANCA/BRICK-XL Setup Tool BinTec Communications AG
[IP][OSPF][INTERFACE]: Configure Interface BRICK-XS BRICK-XL

Admin Status active (propagate routes + run OSPF)
Area ID 11.0.0.0

Metric Determination auto (ifSpeed)
Metric (direct routes) 1562

Authentication Type none
Authentication Key

Import indirect static routes no

SAVE CANCEL

Use (Space) to select

IP INTERFACESOSPF

SAVE

IP INTERFACESOSPF

SAVE
210

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Configuration Steps for BRICK-XS

1. Assuming an OSPF license is installed and OSPF has been enabled the dial-up
partner interface to BRICK-XL should be created. In our example a transfer
network (12.0.0.0) is used.

2. In the menu create Area 11.0.0.0. and define it
as a Stub Area.

3. In the menu assign the ethernet interface
(en1) to Area 11.0.0.0 and make sure the Admin Status is set to active.

BIANCA/BRICK-XS Setup Tool BinTec Communications AG
[IP][OSPF][AREA][ADD]: Area Configuration BRICK-XS

Area ID 11.0.0.0

Import external routes no
Import summary routes no
Create area default route (only ABR) no

Area Ranges >

SAVE CANCEL

Enter IP address (a.b.c.d or resolvable hostname)

BIANCA/BRICK-XS Setup Tool BinTec Communications AG
[IP][OSPF][INTERFACES] Configure Interface en1 BRICK-XS

Admin Status active (propagate routes + run OSPF)
Area ID 11.0.0.0

Metric Determination auto (ifSpeed)
Metric (direct routes) 10

Authentication Type none
Authentication Key

Import indirect static routes no

SAVE CANCEL

Use (Space) to select

IP AREASOSPF

IP INTERFACESOSPF
211

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
4. In menu locate the dialup interface (creat-
ed in step 1) and assign the interface to Area 11.0.0.0 (or the value used in step
2).

Set the Admin Status for the dialup interface to active and select SAVE.

BIANCA/BRICK-XS Setup Tool BinTec Communications AG
[IP][OSPF][INTERFACES] Configure Interface dialup BRICK-XS

Admin Status active (propagate routes + run OSPF)
Area ID 11.0.0.0

Metric Determination auto (ifSpeed)
Metric (direct routes) 1562

Authentication Type none
Authentication Key

SAVE CANCEL

Use (Space) to select

IP INTERFACESOSPF
212

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Configuration Steps for BRICK-XM

1. An OSPF license must already be installed and OSPF should been enabled
 menu.

Then create an area entry for Area 10.0.0.0 in the
ip menu.

2. In the menu assign ethernet interfaces en1
and en2 to Area 10.0.0.0 (or the value from the previous step) and set the Ad-
min Status for each interface to active.

BIANCA/BRICK-XM Setup Tool BinTec Communications AG
[IP][OSPF][AREA][ADD]: Area Configuration BRICK-XM

Area ID 10.0.0.0

Import external routes yes

Area Ranges >

SAVE CANCEL

Enter IP address (a.b.c.d or resolvable hostname)

BIANCA/BRICK-XM Setup Tool BinTec Communications AG
[IP][OSPF][INTERFACES] Configure Interface en1 BRICK-XM

Admin Status active (propagate routes + run OSPF)
Area ID 10.0.0.0

Metric Determination auto (ifSpeed)
Metric (direct routes) 10

Authentication Type none
Authentication Key

Import indirect static routes no

SAVE CANCEL

Use (Space) to select

IP STATIC SETTINGSOSPF

IP AREASOSPF

IP INTERFACESOSPF
213

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
3. Ethernet interface en3 should already be assigned to the backbone, Area 0.0.0.0
which is the default.

In the menu verify this setting and change
the Admin Status to active.

4. Return to the menu and scroll to the Area
ID entry for the backbone and hit enter.

Move to the submenu to add an OSPF aggregate for the LANs
attached to en1 and en2. The Address and Mask entries shown below will
match any routes with a destinations starting with 10, or 10.*.*.*.

This entry means that BRICK-XM will consolidate multiple routes (routes for
destinations in Area 10.0.0.0) into a single link state advertisement.

This will effectively reduce the amount of traffic sent over the backbone as will
help keep the size of the link state database and routing tables for routers in
other areas to a minimum.

BIANCA/BRICK-XM Setup Tool BinTec Communications AG
[IP][OSPF][AREA][RANGE][ADD]: Configure Address range for Area BRICK-
XM

Address 10.0.0.0
Mask 255.0.0.0

 Advertise Matching yes

 SAVE CANCEL

Enter IP address (a.b.c.d or resolvable hostname)

IP INTERFACESOSPF

IP AREAOSPF

AREA RANGES
214

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Configuring OSPF Virtual Links

A virtual interface must be defined on each of the ABRs by creating an entry in the osp-
fVirtIfTable. This is done by setting the ospfVirtIfNeighbor and ospfVirtIfAreaID ob-
jects.

ospfVirtIfNeighbor should be set to the Router ID of the Area Border Router at the
oher end of the virtual link.

ospfVirtIfAreaID should be set to the area ID of the transit area.
The virtual link in the diagram here would be configured on Brick-A as follows.

This creates a new OSPF virtual interface (on BRICK-A) that links two parts of the
backbone via the transit area 10.0.0.0. The respective interface would be created on
BRICK-B using almost the same command (ospfVirtIfAreaID=10.0.0.0 ospfVirtIf-
Neighbor=10.0.1.1)

Remember that the area being used as the transit area must already be defined in the
ospfAreaTable.

Controlling Link State Database Overflow

Sites with large (or complicated) network installations that are running OSPF may no-
tice the Link State Database (LSDB) becoming large. Most often this is the case where
external routes are being imported as external advertisements.

One way to minimize the size of the LSDB (on the BRICK) is to use the ospfExtLsd-
bLimit variable. This object defines the maximum number of external LSAs to store in
the database (the local copy).

Once the limit is reached the BRICK goes into Overflow State. In Overflow State two
things happen:

1. The BRICK begins to flush all external advertisements generated locally.

BRICK-A:system> ospfVirtIfTable

inx AreaId(*rw) Neighbor(*rw) TransitDelay(rw)
RetransInterval(rw) HelloInterval(rw) RtrDeadInterval(rw)
State(ro) Events(ro) AuthKey(rw)
Status(-rw) AuthType(rw)

BRICK-A:ospdVirtIfTable> AreaID=10.0.0.0 Neighbor=10.0.1.2
215

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
2. The BRICK ignores all new external advertisements.

By default the BRICK remains in overflow state but can optionally be configured to
leave overflow state (and continue to process new external LSAs) automatically after a
time period. The ospfExtOverflowInterval variable defines the number of seconds to
wait before leaving overflow state automatically. The default is 0 seconds (i.e., stay in
overflow state). After waiting ospfExtOverflowInterval seconds the number of exter-
nal LSAs in the LSDB is compared to the ospfExtLsdbLimit. If there is room in the da-
tabase for new LSAs the BRICK then leaves overflow state; otherwise another time in-
terval is waited.

The diagram shown below attempts to illustrate the behavior of database over-
flow control using the ospfExtLsdbLimit and ospfExtOverflowInterval variables.
Enabling Demand Circuit Support

Demand Circuit support for dial-up partner interfaces is enabled by default when an
existing interface is enabled for OSPF (AdminStatus is set to active). Support can be
manually controlled by setting the interface’s IfDemand object (ospfIfTable) to “true”
or “false”. When set to false, the state of this interface is always up.

Setting this variable to true for one side of the connection is sufficient (that is, as long
as OSPF has been enabled on both sides, i.e., ipExtIfOspf=active) if both sides support
RFC 1793.

NOTE: The maximum size of the LSDB must be the same for all
OSPF routers in the domain for this feature to perform effi
ciently.

Note: Until a neighbour router has been identified HELLO
packets are periodically transmitted (default, ospfIfPol-
lInterval = 120 seconds) over the interface. This results in
the link being opened. Once the LSDB has been syn-
chronised, the HELLO protocol is then suppressed.
216

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Import - Export of Routing Information
When different routing protocols are used within the same domain it is sometimes use-
ful to be able to exchange (import or export) routing information between these proto-
cols.

Using the ipImportTable routing information generated by one protocol (ipImport-
SrcProto) can be imported or exported to another protocol (ipImportDstProto).

Currently the following SrcProto↔DstProto combinations are possible.

1. ipImportSrcProto=default_route ipImportDstProto=ospf
This entry forces an external Link State Advertisement to be generated that de-
fines a default route for the Autonomous System.

2. ipImportSrcProto=static ipImportDstProto=ospf
With this entry statically configured indirect routes will be propagated via
OSPF as external LSAs.

3. ipImportSrcProto=ospf ipImportDstProto=rip
With this entry, all routes learned via OSPF are imported to RIP. If an OSPF
route changes the import to RIP will triggered an immediate broadcast of the
entire routing table.

The remaining fields of ipImportTable allow for further control of how (and what)
routing information is imported.

• ipImportMetric1
The metric in the context of the destination protocol the imported routes
should get. If sset to -1 these routes get a protocol specific default metric.

ipImportDstProto

rip ospf

ip
Im

p
o

rt
Sr

c
Pr

o
to

default_route 31

direct

static 32

rip –

ospf 33 –
217

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• ipImportType
This object might define protocol specific properties of the imported routes in
the context of the destination protocol.

• ipImportAddr
Specifies (together with ipImportMask) the range of IP addresses for which the
table entry should be valid. The entry is valid if the destination IP address of
the route lies in the range specified by both objects. If both objects are set to
0.0.0.0, the table entry will be valid for destination.

• ipImportMask
Together with ipImportAddr specifies the range of IP addresses for which the
table entry should be valid. For example, if Addr=X.X.0.0 and
Mask=255.255.0.0 then addresses X.X.0.0 through X.X.255.255 are valid.

• ipImportEffect
Defines the effect of this entry. If set to “import”, importation from SrcProto to
DstProto takes place. If set to “doNotImport” importation is prevented.

• ipImportIfIndex
Specifies the interface index of the interface for which the entry should be val-
id. If set to 0 the entry is valid for all interfaces.
218

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Advanced IP Features
Several advanced IP features which are described below are available via settings in
the ipExtIfTable shown below.

IP Session Accounting
In many cases, the logging of each individual TCP/IP session is desirable. IP account-
ing can be turned on for an interface by setting the interface’s Accounting object in the
ipExtIfTable to “on”. Then, for each TCP, UDP or ICMP session that is routed over the
interface, an entry in the ipSessionTable is created. Since this table is updated dynam-
ically, viewing this table allows one to monitor all active sessions.

Once a session is terminated, either by disconnection of the TCP session or timeout,
an accounting record is written to the biboAdmSyslogTable (Subject=acct, Level=info).
Records can also be sent to remote log hosts using the syslog protocol (see the section
Logging with Remote LogHosts, in Chapter 7, System Administration on the BRICK.

Network Address Translation
NAT (Network Address Translation) allows the BRICK to hide a complete LAN behind
one IP address and may be useful in different installations where:

• Security is an issue.
(controlling access to a limited number of hosts)

• The number of available IP addresses is limited.
• Monitoring of incoming connections is desired.

mybrick: admin> ipExtIfTable

inx Index(*ro) RipSend(rw) RipReceive(rw)
ProxyArp(rw) Nat(rw) NatRmvFin(rw)
NatTcpTimeout(rw) NatOtherTimeout(rw) NatOutXlat(rw)
Accounting(rw) TcpSpoofing(rw)

mybrick: ipExtIfTable >

NOTE: Logging with the Syslog protocol is unreliable. In seldom cases
accounting records may get lost. Generally, it’s best to configure
log hosts that are on the same LAN segment as the BRICK, use
caution when configuring hosts that can only be reached via
ISDN.
219

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
The BRICK performs NAT by keeping track of all TCP/IP sessions and manipulat-
ing all incoming/outgoing IP packets to reflect different source and destination ad-
dresses.

In the diagram shown below, the BRICK’s ISDN interface can be configured for
NAT. All hosts on the Private LAN at 192.168.10.0 can still access external networks,
but will appear to external hosts as the same host (16.0.0.30). Connections initiated
from outside the private LAN can access local hosts only after local hosts have been ex-
plicitly configured (on the BRICK) to accept connections from external hosts. Finally, it
is also possible to specify the IP address translation and remote address(es) for outgo-
ing sessions.

192.168.10.1

192.168.10.2

192.168.10.7

192.168.10.3

192.168.10.6

NAT

16.0.0.30

192.168.30.7

192.168.10.4

192.168.10.5

Private LAN

Internet
Service
Provider

Internet

Inside Outside
220

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Enabling NAT

Step 1
First, a route for the externally visible IP address is needed. For our example shown
above, we would create a route to use our ISDN interface with:

mybrick: admin> ipRouteIfIndex=10001 ipRouteDest=16.0.0.30 ipRouteNexthop=16.0.0.30
ipRouteMask=255.255.255.255 ipRouteType=direct

02: ipRouteIfIndex.16.0.0.30.2(rw): 10001
02: ipRouteDest.16.0.0.30.2(rw): 16.0.0.30
02: ipRouteNextHop.16.0.0.30.2(rw): 16.0.0.30
02: ipRouteMask.16.0.0.30.2(rw): 255.255.255.255
02: ipRouteType.16.0.0.30.2(-rw): direct

mybrick: ipRouteTable >

NOTE: This example NAT configuration assumes that the LAN is
properly configured and that the appropriate routes are present
to allow hosts to connect to external networks.
221

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Step 2
Next, enable the interface the BRICK should perform NAT for; this is “10001” for our
example from step 1. Locate the appropriate table entry in the ipExtIfTable, and set Nat
to “on”.

At this point, all hosts on the LAN are inaccessible from external networks but can
continue to establish external connections at will.

Allowing Incoming Connections

To allow network connections to hosts on the private LAN (from external networks/
hosts), explicit permission must be configured in the ipNatPresetTable. Packets arriv-
ing from external networks and addressed to different (official) addresses can be linked
to various (internal) addresses. Each entry in this table defines a specific port on a spe-
cific host that can be accessed from outside the private LAN.

For each entry, the following variables must be defined:

mybrick: ipExtIfTable> ipExtIfTable

inx Index(*ro) RipSend(rw) RipReceive(rw)
ProxyArp(rw) Nat(rw) NatRmvFin(rw)
NatTcpTimeout(rw) NatOtherTimeout(rw) NatOutXlat(rw)
Accounting(rw) TcpSpoofing(rw) AccessAction(rw)
AccessReport Ospf(rw) OspfMetric(rw)
TcpCKsum(rw) BackRtVerify(rw) RuleIndex(rw)
Authentication(rw) RouteAnnounce(rw)

...
02 10001 ripV1 both

off off yes
3600 30 on
off off ignore
info active auto
check off 0
off strict 3600
60 up_dormant

...
mybrick: admin> ipExtIfNat:02=on
02: ipExtIfNat.10001.2(rw): on

mybrick: ipExtIfTable >
222

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Ifindex The Ifindex NAT is being performed on,
IntAddr The host that is to be accessed
Protocol The protocol (TCP, UDP, ICMP) to allow.
IntPort The port on the specified host to allow

(ftp, telnet, nntp, etc). Required only if the
Protocol uses ports (TCP and UDP). –

In the following example, several servers can be entered for the same service in the
ipNatPresetTable. In oder that each of these can be reached with a different external
address, the external addresses must be entered in the ipNatPresetTable and the exter-
nal mask set to 255.255.255.255.

inx IfIndex(*rw) Protocol(*-rw) RemoteAddr(rw) RemoteMask(rw)
ExtAddr(rw) ExtMask(rw) ExtPort(*rw) ExtPortRange(rw)
IntAddr(rw) IntPort(rw)

00 10001 tcp 0.0.0.0 0.0.0.0
192.1.1.1 255.255.255.255 80 -1
10.1.1.1 -1

01 10001 tcp 0.0.0.0 0.0.0.0
192.1.1.2 255.255.255.255 80 -1
10.1.1.2 -1

02 10001 tcp 0.0.0.0 0.0.0.0
192.1.1.3 255.255.255.255 80 -1
10.1.1.3

mybrick: ipNatPresetTable >
223

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
We can use the special internal address 0.0.0.0 to allow access to all hosts on our
LAN. The entry below would be used to allow all ICMP packets to enter the private
LAN.

Mapping Addresses for Outgoing Traffic

The ipNatPresetTable, however, only controls incoming traffic initiated outside the
LAN, allowing access to all or just to specified internal hosts.

In order to map outgoing traffic, i.e. internal addresses initiated within the LAN, to
specified and different, external IP addresses, and to specify the remote address(es)
packets with these NAT addresses should be sent to, a further table, the ipNatOutTa-
ble, is available. In the following example, packets from the hosts with the internal ad-
dresses 10.1.1.1 to 10.1.1.3 are to be sent with NAT with the external IP addresses
192.1.1.1. to 192.1.1.3.

mybrick: admin>ipNatPrIfIndex=10001 ipNatPrIntAddr=0.0.0.0 ipNatPrProtocol=icmp ipNat-
PrExtPort=-1

inx IfIndex(*rw) Protocol(*-rw) RemoteAddr(rw) RemoteMask(rw)
ExtAddr(rw) ExtMask(rw) ExtPort(*rw) ExtPortRange(rw)
IntAddr(rw) IntPort(rw)

1 0001 icmp 0.0.0.0 0.0.0.0
0.0.0.0 0.0.0.0 -1 -1
0.0.0.0 -1

mybrick: ipNatPresetTable >
224

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
If no matching entry is found, the IP address is set to the IP address defined on the
interface configured for NAT. If a matching entry is found, the source IP address of out-
going IP packets is set to the value of ipNatOutExtAddr. This table is only used if the
outgoing address translation is activated (if ipExtIfNatOutXlat from the ipExtIfTable
is set to on).

Entries in the table are created and removed manually by network management.

The ipNatOutTable consists of the following variables:

ipNatOutIfIndex This variable specifies the interface index, for which the ta-
ble entry shall be valid. If set to 0, the entry will be valid for all interfaces configured
to use NAT.

ipNatOutProtocol Possible values: icmp (1), tcp (6), udp (17), any (255), delete
(256)
This variable specifies the protocol, for which the table entry shall be valid.
Default value: any

ipNatOutRemoteAddr Together with ipNatOutRemoteMask, this variable speci-
fies the set of target IP addresses for which the table entry is valid. If both variables
are set to 0.0.0.0, the table entry will be valid for any target IP address.

inx IfIndex(*rw) Protocol(*-rw) RemoteAddr(rw)
RemoteMask(rw) ExtAddr(rw) RemotePort(rw)
RemotePortRange(rw)IntAddr(rw) IntMask(rw)

00 10001 any 0.0.0.0
0.0.0.0 192.1.1.1 -1
-1 10.1.1.1 255.255.255.255

01 10001 any 0.0.0.0
0.0.0.0 192.1.1.2 -1
-1 10.1.1.2 255.255.255.255

02 10001 any 0.0.0.0
0.0.0.0 192.1.1.3 -1
-1 10.1.1.3 255.255.255.255

mybrick: ipNatOutTable >
225

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ipNatOutRemoteMask Together with ipNatOutRemoteAddr, this variable specifies
the set of target IP addresses for which the table entry is valid. If both variables are
set to 0.0.0.0, the table entry rn_wa_511tx.backupwill be valid for any target IP ad-
dress.

ipNatOutExtAddr This variable specifies the external IP address to which the
internal IP address is mapped.

ipNatOutRemotePort Together with ipNatOutRemotePortRange, this variable
specifies the range of port numbers for outgoing calls, for which the table entry shall
be valid. If both variables are set to -1, the entry is valid for all port numbers. If ip-
NatOutPortRange is set to -1, the entry is only valid, when the port number of an
outgoing call is equal to ipNatOutRemotePort. Otherwise, the entry is valid, if the
called port number is in the range RemotePort .. RemotePortRange.
Default value: -1 Possible values: –1..65535

ipNatOutRemotePortRange Together with ipNatOutRemotePort, this variable
specifies the range of portnumbers for outgoing calls, for which the table entry shall
be valid. If both variables are set to –1, the entry is valid for all portnumbers. If ip-
NatOutPortRange is set to -1, the entry is only valid, when the portnumber of an
outgoing call is equal to ipNatOutRemotePort. Otherwise, the entry is valid, if the
called portnumber is in the range RemotePort .. RemotePortRange.
Default value: -1 Possible values: –1..65535)

ipNatOutIntAddr Together with ipNatOutIntMask, this variable speci-
fies the internal host’s IP address for outgoing calls matching the table entry. If both
variables are set to 0.0.0.0, the table entry will be valid for any source IP address.

ipNatOutIntMask Together with ipNatOutIntAddr, this variable speci-
fies the internal host’s IP address for outgoing calls matching the table entry. If both
variables are setto 0.0.0.0, the table entry will be valid for any source IP address.

Session Monitoring

While NAT is operating, you can see a list of established connections in the ipNatTable.
This table changes dynamically as sessions from local hosts are opened/closed. A ses-
sion may be either a tcp connection, a udp connection or an icmp connection with
226

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
icmp-echo messages (ping). A valid session is either an outgoing session or an incom-
ing session specified in the ipNatPresetTable. An example ipNatTable for our installa-
tion might look as follows.

Here we see that three hosts have active sessions.

Entry 00 shows:
The host at 192.168.19.19 has been connected to the FTP service,
port 21 on 192.168.10.5.

Entry 01 shows:
Our local host at 192.168.10.2 has an HTTP connection (port 80)
open with the host at 10.0.70.123.

Entry 02 shows:
Our local host at 192.168.10.3 has a telnet session (port 23)
opened with the host at 192.168.55.10.

The Age field specifies the period of time since the last packet was sent or received
for this session.

mybrick: admin>ipNatTable

inx IfIndex(*ro) Protocol(*ro) IntAddr(*ro) IntPort(*ro)
ExtAddr(ro) ExtPort(ro) RemoteAddr(ro) RemotePort(ro)
Direction(ro) Age(ro)

00 10001 tcp 192.168.10.5 21
16.0.0.30 456 192.168.19.19 80
incoming 0 00:01:28.00

01 10001 tcp 192.168.10.2 80
16.0.0.30 456 10.0.70.123 1605
outgoing 0 00:18:08:40

02 10001 tcp 192.168.10.3 23
16.0.0.30 456 192.168.55.10 77
outgoing 0 00:00:05.00

mybrick: ipNatTable >
227

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Proxies

In some cases NAT will not work when port numbers and/or IP addresses are trans-
mitted in the data part of a TCP or UDP session. This is the case for some of the stand-
ard Internet Protocols (IP). To allow these protocols to work with NAT, so-called “prox-
ies” have been implemented within the NAT software.

These proxies know how IP addresses and port numbers are transmitted within the
data-portion of a connection. The proxy tracks the data sent/received, detects the ad-
dresses/port numbers used, and translates the information according to the NAT
translation software. Currently, internal proxies have been implemented for the fol-
lowing services:

• FTP • rlogin
• IRC • RCP
• Real Audio • rsh
• VDOLive Audio • VDOLive Video

Proxy ARP
ARP (Address Resolution Protocol) is a technique used to map an IP address to a phys-
ical network address, or MAC address. Normally, ARP requests for the hardware ad-
dress of a particular IP address are answered by the station the IP address is assigned
to. With proxy ARP, the request can be alternatively answered by the BRICK. This is
useful when a host on your network is connected via an ISDN line.

Our example above shows a setting, where a laptop is used in the Home Office and
is connected to the LAN via ISDN, but may also be connected to the LAN directly. In
this example ARP requests from the LAN for the laptop’s physical address, are an-

192.168.10.3 192.168.10.2

0:0:0.1:2:3

0:0:0:f4:f5:f6

ARP reply
IP: 192.168.10.3
MAC: 0:0:0:1:2:3

ARP request
IP: 192.168.10.3
MAC: ?

ISDN

192.168.10.3

0:0:0:f4:f5:f6

192.168.10.1

LAN:Proxy ARP=on

WAN:Proxy ARP=on
LAN:Proxy ARP=on

WAN:Proxy ARP=up_only

Home Office
Central LAN
228

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
swered by the BRICK, as long as the laptop is connected via ISDN. When the laptop is
connected to the LAN, it answers ARP requests itsself.

To activate Proxy ARP it must be turned on for the LAN interface and the destina-
tion WAN interface, via which the requested IP address would be routed. The Proxy
ARP settings for the WAN interface work in dependence of the operation state of the
respective interface, when turned on (on or up_only). IP datagrams from the LAN des-
tined for these hosts are sent directly to the BRICK and are forwarded to the real host.
The benefit of proxy ARP is that no routing entries need to be made for such hosts.

For the LAN interface the variable ipExtIfProxyArp (ipExtIfTable) can receive the val-
ues off and on:

• off
Proxy ARP is turned off, which is the default value.

• on
Proxy ARP is turned on.

In Setup Tool Proxy ARP for the LAN can be configured in the Advanced Settings
for the LAN interface.

For the WAN interface the configuration of the variable ipExtIfProxyArp (ipExtIfTa-
ble) differs. When proxy ARP is turned on, ARP requests are answered in dependence
of the ifOperStatus (ifTable) of the interface, via which the requested host can be
reached. Possible values are off, on and up_only.

Values for ipExtIfProxyArp on the WAN interface:

• off
Proxy ARP is turned off, which is the default value.

• on
The request is only answered, when the WAN interface has the ifOperStatus
up or dormant. When the interface was in the state dormant, a connection is
setup after the ARP request.

• up_only
The request is only answered, when the WAN interface has the ifOperStatus
up. This value makes sense, when ARP requests should only be answered in
case there is already an existing connection to the requested host.
229

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
In Setup Tool Proxy ARP for the WAN interface can be configured in the WAN Part-
ner menu for the respective host in the Advanced Settings of the IP submenu.

The requirements for an answer to a ARP request from the LAN by the BRICK are that
the destination address would be routed to a different but the LAN interface and that
on both interfaces (LAN and destination WAN interface) proxy ARP is turned on (on
for the LAN interface and on or up_only for the respective WAN interface). Beyond
that the ifOperStatus of the WAN interface must have the demanded state.

When you want to use Proxy ARP on a RADIUS interface, the variable ipExtIf-
ProxyArp must be set via the BinTec-specific RADIUS attributes. On using BinTec-spe-
cific RADIUS attributes see the Extended Feature Reference available via the BinTec
FTP server at http://www.bintec.de.

RIP Options
RIP (Routing Information Protocol) is used by IP routers to learn of new IP routes

(see RIP for a brief description). To enable the RIP on the BRICK the biboAdmRipUdp-
Port field must be set to 520. This is the default setting and specifies the UDP-port to
exchange RIP messages over. RIP can be disbled completely by assigning UDP port 0
to this variable.

The BRICK supports both versions 1 and version 2 of RIP. Using the RipSend and
RipReceive variables in the ipExtIfTable, the BRICK can be configured to separately
send/receive either version, both versions or no RIP packets over selected interfaces.
RipReceive defines the types of RIP packets that are accepted (will use for dynamically
learning of new routes) over the interface.

ipExtIfRipSend can be assigned the values:
ripV1 Send only RIP V1 packets.
ripV2 Send only RIP V2 packets.
both Send a RIP V1 packet, and a V2 packet.
none Do not send RIP packets.

NOTE: Proxy ARP may cause problems on systems that check for security
violations where two IP addresses map to the same physical
address.
230

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

http://www.bintec.de

w
w

w
.b

in
te

c.
de

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
ipExtIfRipReceive can be assigned the values:
ripV Accept only RIP V1 packets.
ripV2 Accept only RIP V2 packets.
both Accept both versions.
none Ignore RIP packets.

Back Route Verify

ipExtIfBackRtVerify

This variable activates a check for incoming packets. If set to on, incoming packets
are only accepted if return packets sent back to their source IP address would be sent
over the same interface. Otherwise, the packets are silently dropped. This prevents
packets being passed from untrusted interfaces to this interface.
Possible values: off (1), on (2)Default value: off
231

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

8

Configuring the BRICK as an IPX Router

What’s Covered?

■ Introduction to IPX

• IPX Stations: Servers and Clients
• IPX Networks: Network Numbers

and Addresses
BIANCA/BRICK Software Reference
■ Configuring IPX Routing
• Adding Routes and Services
• Learning Routes and Services
• Filtering IPX Packets
Chapter Eight
1CONFIGURING THE BRICK

AS AN IPX ROUTER
232

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Introduction to IPX
IPX (Internetwork Packet exchange) is a Network Layer protocol, similar to IP in TCP/
IP. An IPX network allows DOS/Windows PCs to share networked services and devic-
es. Services are provided by special PCs which are assigned the duties of, for example,
a file or print server.

IPX (Internetwork Packet exchange) is a connectionless service used to transmit da-
ta.

SPX (Sequenced Packet Exchange) is a connection-oriented service used to monitor
connections between stations (e.g., a connection to a print service).

Using RIP and SAP routing and service information is periodically exchanged be-
tween IPX routers and servers on the network using the RIP and SAP (Service Adver-
tising Protocol) packets.

IPX Stations: Servers and Clients
In an IPX network, stations on the network are classified as either a client or server; and
have different characteristics.

Servers

1. Provide special services, (e.g., remote file access, printing, databank access,
etc.) to clients.

2. Have a unique name.
3. Can communicate with both servers and clients.

Clients

1. Use the services provided by server stations.
2. Do NOT have unique names.

TCP/IP Networks IPX Networks

SPX NCP RIP SAP

IPX

Ethernet ISDN

TCP UDP

IP

Ethernet ISDN
233

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
3. Can ONLY communicate with servers.

IPX Networks: Network Numbers and Addresses
In an IPX network, a network address consists of:

4 byte Network Number
6 byte Node Number
2 byte Socket Number

In contrast to IP, where hosts are assigned addresses statically, clients are assigned
the Network Number portion of their address dynamically. Servers, on the other hand,
have their complete address assigned statically.

Initially, a client asks for its network number by broadcasting a request. A server or
router on the network will answer the request with the correct network number. The
client then uses the Network Number (received from the server) and its Node Number
(normally the MAC address is used), to establish a connection to a server.

Internal Network Numbers

Since IPX uses each stations MAC address for its network address, stations with more
than one interface to the network can be reached at different addresses. This can be a
problem for a server that advertises services or an IPX router that links multiple IPX
LANs.

To get around this problem, servers and IPX routers are assigned Internal Network
Numbers. The respective server or router is the only station on this network. By send-
ing RIP packets, routers and servers can inform other stations on the network.

Net Number
1:2:aa:bb

Net Number
6:7:aa:bb

Internal
Net Number

0:0:0:ab

Internal
Net Number

0:0:0:aa

ISDN,
Ethernet,

etc.
234

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Configuring IPX Routing

Adding Routes and Services
Routes and services the BRICK knows of are learned using the RIP and SAP protocols.
This information often changes dynamically. Additional routes and services can be set
statically, using the ipxStaticRouteTable and ipxStaticServTable.

Adding Static Routes

To create a static route to a server the you will need to know the server’s internal net-
work number, its name, and the interface the connection should use. The following
commands could be used to add a static route to the file server "PHOENIX" which has
the internal network number of 0:2:2:2, the route will use the dialup1 interface (ifIndex
10001).

Adding Static Services

A service can also be added statically using the ipxStaticServTable. For services, you
will also need to know:

mybrick : system > ipxStaticRouteTable

inx SysInstance(*rw) CircIndex(*rw) NetNum(*rw) ExistState(-rw)
Ticks(rw) HopCount(rw)

mybrick : ipxStaticRouteTable > ipxStaticServSysInstance=0 ipxStaticRouteCircIndex=10001
ipxStaticRouteNetNum=0:2:2:2

00: ipxStaticRouteSysInstance.0.10001.0.2.2.2(rw): 0
00: ipxStaticRouteCircIndex.0.10001.0.2.2.2(rw): 10001
00: ipxStaticRouteNetNum.0.10001.0.2.2.2(rw): 0:2:2:2

mybrick : ipxStaticRouteTable > ipxStaticRouteTable

inx SysInstance(*rw) CircIndex(*rw) NetNum(*rw) ExistState(-rw)
Ticks(rw) HopCount(rw)

 00 0 10001 0:2:2:2 on
0 0

mybrick : ipxStaticRouteTable >
235

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• The socket number
• The type of service the server provides
• The server’s Node Number.

The following could be used to add a static service for “PHOENIX” from the previ-
ous section.

Note:
For each ipxStaticServNetNum, the BRICK needs to
have a route to the server in ipxStaticRouteNetNum.

mybrick : ipxStaticRouteTable > ipxStaticServTable

inx SysInstance(*rw) CircIndex(*rw) Name(*rw) Type(*rw)
ExistState(-rw) NetNum(rw) Node(rw) Socket(rw)
HopCount(rw)

mybrick:ipxStaticServTable> SysInstance=0 CircIndex=10001 Name=PHOENIX Type=0:4
NetNum=0:2:2:2 Node=0:0:0:0:0:1 Socket=4:51

00: ipxStaticServSysInstance.0.10001.7.80.72.79.69.78.73.88.0.4(rw): 0
00: ipxStaticServCircIndex.0.10001.7.80.72.79.69.78.73.88.0.4(rw): 10001
00: ipxStaticServName.0.10001.7.80.72.79.69.78.73.88.0.4(rw): "PHOENIX"
00: ipxStaticServType.0.10001.7.80.72.79.69.78.73.88.0.4(rw): 0:4
00: ipxStaticServNetNum.0.10001.7.80.72.79.69.78.73.88.0.4(rw): 0:2:2:2
00: ipxStaticServNode.0.10001.7.80.72.79.69.78.73.88.0.4(rw): 0:0:0:0:0:1
00: ipxStaticServSocket.0.10001.7.80.72.79.69.78.73.88.0.4(rw): 4:51

mybrick:ipxStaticServTable> ipxStatisServTable

inx SysInstance(*rw) CircIndex(*rw) Name(*rw) Type(*rw)
ExistState(-rw) NetNum(rw) Node(rw) Socket(rw)
HopCount(rw)

 00 0 10001 "PHOENIX" 0:4
on 0:2:2:2 0:0:0:0:0:1 4:51
0

mybrick:ipxStaticServTable>
236

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Learning Routes and Services
Adding static routes and services for IPX network that change often, or have many
servers can be demanding. You can allow the BRICK to learn of routes and services us-
ing RIP and SAP and then have the BRICK move all learned information to the Static
tables. This is done as follows:

1. Enable RIP/SAP for the PPP interface.
2. Wait until the desired routes and services appear in the

ipxDestTable and ipxDestServTable.
3. Set ipxAdminLearnStatics to both .
4. Disable RIP and SAP for the PPP interface.

The result of this is that all routes and services learned from PPP interfaces are cop-
ied appended from ipxDestTable and ipxDestServTable to the ipxStaticRouteTable
and ipxStaticServTable.

Filtering IPX Packets
An important characteristic of IPX networks is the periodic sending of IPX packets be-
tween communicating stations over the network. For LAN traffic this is acceptable, but
when connecting IPX LANs over ISDN, the amount of RIP and SAP traffic can lead to
long (or often) connection times. In addition to the spoofing mechanism IPX traffic can
be filtered using the ipxAllowTable and ipxDenyTable.

Note:
Each time the BRICK is allowed to learn statics, the
learned information is appended to the Static tables.
This may result in duplicate static entries.
237

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
For example, serialization packets could be filtered with the following.

This filter would not allow ISDN connections to be opened for Novell serialization
packets. If an ISDN connection is already open, serialization packets would be allowed
through. By default this filter is automatically added to the ipxDenyTable at boot time,
and can be removed.

mybrick : ipxStaticRouteTable > ipxDenyTable

inx PktTypeMode(*-rw) PktType(rw) DstIfStatus(rw)
DstNetMode(rw) DstNet(rw) DstNodeMode(rw)
DstNode(rw) DstSockMode(rw) DstSock(rw)
SrcIfIndexMode(*rw) SrcIfIndex(rw) SrcNetMode(rw)
SrcNet(rw) SrcNodeMode(rw) SrcNode(rw)
SrcSockMode(rw) SrcSock(rw)

mybrick: ipxDenyTable > DstSockMode=verify DstSock=1111 DstIfStatus=dormant
PktTypeMode=dont_verify SrcIfIndexMode=dont_verify

01: ipxDenyDstSockMode.1.1.2(rw): verify
01: ipxDenyDstSock.1.1.2(rw): 1111
01: ipxDenyDstIfStatus.1.1.2(rw): dormant
01: ipxDenyPktTypeMode.1.1.2(-rw): dont_verify
01: ipxDenySrcIfIndexMode.1.1.2(rw): dont_verify

mybrick : ipxStaticRouteTable> ipxDenyTable

inx PktTypeMode(*-rw) PktType(rw) DstIfStatus(rw)
DstNetMode(rw) DstNet(rw) DstNodeMode(rw)
DstNode(rw) DstSockMode(rw) DstSock(rw)
SrcIfIndexMode(*rw) SrcIfIndex(rw) SrcNetMode(rw)
SrcNet(rw) SrcNodeMode(rw) SrcNode(rw)
SrcSockMode(rw) SrcSock(rw)

 00 dont_verify unknown dormant
dont_verify 0 dont_verify

verify 1111
dont_verify 0 dont_verify
0 dont_verify
dont_verify 0

mybrick:ipxDenyTable>
238

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

9

Using the BRICK as a CAPI Server

What’s Covered?

■ Background on CAPI

• Register Connect Release
• Message Queues

■ The Remote CAPI
• Remote CAPI Library
• RVS-COM Lite for Windows 95 and

Windows NT
BIANCA/BRICK Software Reference
■ CAPI Settings on the BRICK
• CAPI System Tables
• CAPI TCP Port

■ Tracing CAPI Connections

■ CAPI Features and Enhancements
Supported by the BRICK
• CAPI 1.1 Enhancements
• BinTec Extensions to CAPI 1.1
• CAPI 2.0 Enhancements
• BinTec Extensions to CAPI 2.0
Chapter Nine
1USING THE BRICK AS A

CAPI SERVER
239

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Background on CAPI
CAPI (Common ISDN Application Programming Interface) is an application program-
ming interface used for developing ISDN applications for various operating systems.
These applications utilize a host’s connected ISDN interfaces. RVS-COM (Lite Version)
for Windows 95 and Windows NT which is included with the BRICK is an example of a
suite of CAPI applications.

The CAPI specification defines both the CAPI entity (the server) and the protocol
that CAPI applications must use when communicating with this entity. By defining a
standardized software interface, CAPI allows applications to access ISDN services in a
straightforward way. The CAPI specifications are a result of close cooperation among
leading ISDN manufacturers and are set forth in two versions.

• CAPI Version 1.1 dated September 1990
• CAPI Version 2.0 dated February 1994

Normally, CAPI is implemented on a single PC with one ISDN adapter and direct
access to the ISDN. The CAPI server and the running CAPI applications communicate
directly under the shadow of one operating system. Operating systems supporting
CAPI include:

• Windows 3.11 • Windows 95 • Windows NT
• Novell • UNX platforms (using libcapi+capifax)

Register Connect Release
The basic working process of CAPI can be simplified in three basic steps.

1. Application Registering
Before an application can communicate with the CAPI, it must register with
the server. Once it’s registered, the server assigns it a unique application ID
(APPL_ID). At the same time, the application assigns memory space for its
message queue (see below).

2. Application Connections
The application is now ready to establish network connections with other ap-
plications using the attached ISDN interfaces.

3. Application Releasing
Just before the application is closed it releases its connection with the CAPI
server. In other words the application “un-registers” itself with the server.
240

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Message Queues
CAPI applications communicate with the CAPI server via message queues. A message
queue can be seen as a sort of one-way pipe. The CAPI server uses a single message
queue to accept messages from all CAPI applications. CAPI applications have their
own message queues where they receive responses from the CAPI server.

An application issues commands to an ISDN controller by placing a message in the
CAPI’s message queue and the CAPI returns information to the application via its mes-
sage queue.

As shown above applications put “requests” in the CAPI server’s queue and get
“confirmation” messages from the server via their respective queues. Sometimes ex-
changes are initiated by the server. Here, the server puts indication messages in the ap-
plication’s queue and gets a response message from the application via the CAPI mes-
sage queue.

Application 1
Queue

Application 2
Queue

CAPI
Message

PC
 R

un
ni

ng
 C

A
PI

 A
p

p
lic

a
tio

ns

C
A

PI

Queue

Attached ISDN Interface

“get confirmation”“get confirmation”
“put requests”
241

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
The Remote CAPI
Remote CAPI is implemented on the BRICK and extends the CAPI concept to the net-
work level. As mentioned above CAPI and CAPI applications run on a single PC. Re-
mote CAPI is a client-server system that allows distributed applications running on
network computers to access the ISDN interfaces of the BRICK. A Remote CAPI client
is installed on the PC; the BRICK provides the Remote CAPI Server.

This Remote CAPI is a DualMode server, and supports version 1.1 and 2.0 CAPI.
Each PC running Remote CAPI Client software can access the BRICK’s ISDN interfaces
as if the interfaces were available locally. To CAPI applications, messaging between cli-
ent and server remains transparent.

Remote CAPI Library

Using the Remote CAPI server and the accompanying Remote CAPI Library for UNIX,
or CAPI.DLL for Windows, existing CAPI applications can be ported to the Remote
CAPI environment. The remote CAPI library and header file are included on the Com-
panion CD as libcapi.c and libcapi.h.

Attached ISDN Interface

Ethernet

M
a

n
y

P
C

s
R

u
n

n
in

g
C

A
P

I A
p

p
lic

a
tio

n
s

C
A

PI

C
A

PI

C
A

PICAPI Applications CAPI Applications

Remote CAPI Client Remote CAPI ClientRemote CAPI Client

CAPI Applications

Remote CAPI
Server
242

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
RVS-COM Lite for Windows 95 and Windows NT

In addition to the CAPI library, the BRICK comes with the CAPI communications pack-
age RVS-COM (Lite Version) for Windows 95 and Windows NT. RVS-COM Lite consists of
several important data communications programs that have been optimized for the
Remote CAPI environment.

CAPI Settings on the BRICK

CAPI System Tables
The CAPI subsystem on the BRICK consists of the following system tables. These ta-
bles are intended mainly for keeping track of status information and debugging CAPI
connections. Most of these variables are related to CAPI internals and will only be of
importance to CAPI developers.

capiApplTable Lists all currently connected CAPI applications.
capiListenTable Contains application-specific listen settings.
capiPlciTable Contains additional information about

connected applications.
capiNcciTable Contains information for each CAPI NCCI.
capiInfoTable Logs the last 10 CAPI Info Codes and their

message identifiers. A list of CAPI Info Codes
and their values is contained in Appendix A.

CapiConfigTable Optional settings specific to a local ISDN stack.
capiMultiControllerTableContains mappings between controller

numbers used by CAPI applications and the
ISDN stacks available on the BRICK

capiUserTable Includes authentication settings that control
access to the BRICK’s CAPI subsystem.

mybrick: > g capi

73 capiApplTable 74 capiListenTable 75 capiPlciTable 76 capiNcciTable
77 capiInfoTable 78 capiConfigTable 79 capiMultiControllerTable 80 capiUserTable

mybrick: >
243

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
CapiConfigTable

The capiConfigTable contains configuration information specific to each ISDN stack on
the BRICK. Each table entry defines settings applicable to all CAPI calls1 that connect
over the respective stack (capiConfigStkNumber).

The default values for the capiConfigTable variables are shown below:

StkNumber As mentioned above, this defines the ISDN stack
number the rest of the variables apply to.
Stack numbers are numbered from 0 through 31.

FaxG3RcvSpeed The receive speed to use when receiving G3 faxes.
If a CM-EBRI is connected to this stack or you are using
a V!CAS, be sure to set this field to maximum.

FaxG3ECM Specifies whether error correction mode should be
used for G3 facsimile transmissions.

FaxG3Header This specifies whether a header-line and/or logo
should appear on outgoiing facsimilies. The header-
-line contains calling information, the logo contains
the BIANCA/FAX symbol.

VoiceCoding Switches the bit order for voice-data.
SendAlerting For CAPI 1.1 this specifies when the CAPI server

should send alert messages for incoming calls.
V42bis For V.42bis data compression. Compression is used

when V42bis=on and the remote side supports V.42bis.
capiConfigModemDefault Specifies the modem profile of the mdmProfileTable

which contains the default modem parameters to use for

1.The only exception is thecapiConfigSendAlerting variable.

mybrick: > capiConfigTable

inx StkNumber(*ro) FaxG3RcvSpeed(rw) FaxG3ECM(rw)
FaxG3Header(rw) VoiceCoding(rw) SendAlerting(rw)
V42bis(rw) ModemDefault(rw)

 00 0 maximum off
logo_header reverse voice_only
off modem_profile_1
244

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
modemconnections. The valid range is from modem_profile_1
to modem_profile_8.

capiMultiControllerTable

The capiMultiControllerTable was added to the CAPI group to enable the use of CAPI
with different ISDN controllers at the same time.
This table contains mappings between controller numbers used by CAPI applications
and the ISDN stacks available on the BRICK (i.e., the Number field of the isdnStkTable).
The Version field specifies whether an entry applies to a capi11 or capi20 application.
If no CAPI 1.1 entry is defined, CAPI 1.1 applications are assigned isdnStkNumber n
where n is the controller number requested by the application.
If no CAPI 2.0 entry is defined, CAPI 2.0 applications are assigned isdnStkNumber n-1
where n is the controller number requested by the application.

Creating entries: entries are created by assigning a value to the capiControllerNumber
object.

Deleting entries: an entry can be removed by assigning the value delete to its capiCon-
trollerVersion object.

The fields of the table have the following meanings:

Number The controller number requested by the CAPI application.
StkMask This binary number defines the ISDN stack(s) to use for the

specified CAPI 1.1 or CAPI 2.0 applications. Each bit corresponds
to one entry (stack) in the isdnStkTable, the rightmost bit selects
entry 0, the next bit selects entry 1, and so forth. For example,
Number=1 StkMask=0b1101 Version=capi11 means: allow CAPI
1.1 applications requesting ISDN controller 1 to use ISDN stacks
0, 2 and 3.

Version Specifies which CAPI applications (version 1.1, or 2.0) this entry
applies to.
Set this field to delete to delete this entry.
245

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
capiUserTable

The capiUserTable and isdnDispatchTable are both parts of the CAPI User Concept.
The CAPI User Concept gives you greater control of access to the BRICK’s CAPI sub-
system. Each network user that attempts to access the BRICK’s CAPI subsystem must
first be authenticated by using a user name and password which is also configured on
the BRICK, i.e. capiUserName and capiUserPassword in the capiUserTable (it can also
be configured over Setup Tool in the IP static Settings menu). Only if authentication
is successful, can the user receive incoming calls or establish outgoing connections via
the CAPI.
The fields of the capiUsertable have the following meanings:

capiUserName The name of the user. Entered on the BRICK and matches the
entry in the Capi Configuration on the BRICKware, as well as
the entry in isdnDspUserName.

capiUserPasswordThe password of the user. Entered on the BRICK and matches the
entry in the Capi Configuration on the BRICKware.

capiUserCapi Allows or denies the use of CAPI.

When an incoming CAPI call arrives at the BRICK from a WAN partner, the Called Par-
ty Number is compared with the isdnDspLocalNumber in the isdnDispatchTable.

If the CAPI User Concept is being used, the same user name as configured in capiUser-
Name is also configured in the isdnDspUserName in the isdnDispatchTable. The entry
in isdnDspUserName and the entry in capiUserName are then compared. If they
match, the BRICK then forwards the call only to that CAPI application that is authen-
ticated with the same user name as configured in the capiUserTable.

The entire isdnDispatchTable is only relevant for pure router
devices; not for PBX devices.
246

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
CAPI TCP Port
The only required setting on the BRICK is the CAPI TCP port. This is the port the

BRICK listens to for incoming CAPI connections, i.e. it must match the port number
used by the Remote CAPI Client software.

The default port is 2662, however it can be changed by changing the
biboAdmCapiTcpPort variable.

Note that CAPI can be disabled completely on the BRICK by assigning port number
0 to the biboAdmCapiTcpPort variable.

On the PC the CAPI/TAPI server ports are configured in the program “Remote Cli-
ents Configuration”. The CAPI Tracer of the DIME Tools can be configured when start-
ing a Trace session (Start/New CAPI Trace).

The current Unix Tools “capitrace”, “eft”, and “eftd” use CAPI port 6000 as the de-

fault setting. The ports of these programs can be changed by setting the environment

variable “CAPI_PORT” under Unix. (e.g : CAPI_PORT=2662↵, export CAPI_PORT↵)

Tracing CAPI Connections
When debugging connections on the BRICK you may need to trace the ISDN channels
to determine why your CAPI connections may be failling. A tracer collects all CAPI
messages exchanged between CAPI applications on the LAN and the BRICK.
247

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Windows 95/Windows NT users will want to use the included CAPI Trace program
included with DIME Tools. CAPI Tracer is a CAPI application that communicates direct-
ly with the BRICK via a TCP connection; therefore the installation of the Remote CAPI
Client is not required on the trace-host (the host where CAPI Trace is started from). For
information on using CAPI Trace, refer to the BRICKware for Windows documentation.

For UNIX systems the capitrace program is also included on the Companion CD.
For information on using the capitrace program, refer to Chapter 7, Command Reference,
in the User’s Guide.
248

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
CAPI Features and Enhancements Supported by the BRICK
The following sections list official enhancements to the CAPI 1.1 and 2.0 standards as
well as BinTec specific extensions that are supported by all1 BRICK products. As noted
earlier, this information will mostly be of interest to CAPI developers.

CAPI 1.1 Enhancements
In addition to the official standards for CAPI Version 1.1 remote CAPI on the BRICK
supports the following enhancements.

• Use of fax group 3
• Support for X.25 PLP on the D-channel
• CAPI-E-DSS1-Mapping
• Management of semi-permanent connections
• Direct Dial In (DDI) for NT1 equipment
• Extension of CAPI error codes/E-DSS1 adaptation
• Support for DTMF2 functions (receive only)
• NCPD in accordance with ISO 8208 protocol

BinTec Extensions to CAPI 1.1
• CAPI-DSS1 Mapping Which maps the Service Indicator and Additional Info

(SI and ADD), according to 1TR6, HLC, and LLC.
• Specification for V.110 Connections Inband Negotiation is not implemented

for synchronous transmission using bitrate adaptation according to ITU-T
V.110 (user-rate: 10101111).

• DTMF2-Capabilitiy Only the DTMF-detection (DTMF_IND, and
DTMF_RESP messages) and B2-Protocol extensions »0x0B« (i.e. Bittranspar-
ent-Transmit Only) are supported.

• BinTec specific CAPI-Extensions Support for 2400 bps modems (V.22bis).
The SELECT_B2_PROTOCOL_REQ message contains the B2 parameter which

1.With exceptions which are appropriately noted.
2.DualToneMulti Frequency is only supported on the V!CAS and products with a CM-1EBRI.
249

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
is used by modems.

The CAPI-DLPD1-Structure for the identification of the »Modem« protocol is
coded (analogous to V.110 DLPD) as follows:

The Userrate bitfield relevant for modem operation is coded (analogous to
userrate in V.110) as follows:

B2 Protocol

0xf0 analog modem, (BinTec-CAPI only)
2400 bps full-duplex: V.22bis

1.DataLink ProtocolDescription

DLPD Meaning

WORD DATA-LENGTH

BYTE LINK-ADDRESS-A (not used)

BYTE LINK-ADDRESS-B (not used)

BYTE MODULO (not used)

BYTE WINDOW-SIZE (not used)

BYTE User Rate (as with V.110)

Userrate Byte Coding

--1- ---- 7 Databits

--0- ---- 8 Databits

---- 0--- no parity

---- 1--- even parity
250

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
• Optional NCPI-Parameters for ISO 8208 To change the ISO 8208-Default-Win-
dowsize (Standard: 2), these NCPI parameters must be used:

• CAPI 1.1 supported B2/B3 B-channel protocols1:

STRUCT NCPI
Default-

value

WORD lic 0

WORD hic 0

WORD ltc 1

WORD htc 1

WORD loc 0

WORD hoc 0

BYTE modulo_mode 8

BYTE default_window_size
(* additional *)

2

CAPI 1.1
CAPI_SELECTB2_REQ

BRICK-XM
BRICK-XL

B
R

IC
K

-X
S

V
!C

A
S

C
M

-1
B

R
I

C
M

-2
B

R
I

C
M

-1
E

B
R

I

C
M

-P
R

I

0x01
X.75 SLP Basis Operation Mode,
with Implementation Rules IAW
T.90.

• • • • • •

0x02
Transparent-HDLC with Bit-Stuffing,
Frame-Detection and CRC-Check • • • • • •

0x03 Bit transparent operation • • • • • •

0x05 X.75 Btx • • • • • •

0x06 Fax G3 • •
251

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
1. DTMF is only supported on the V!CAS and products with a CM-1EBRI.

0x07 LAP-D • • • • • •

0x08 V.110 with transparent B2-Protocol • •

0x0a
V.110 with X.75 SLP Basis Operation
Mode with Implementation Rules
IAW T.90

• •

0x0b
Bit transparent operation (transmit
only) • • • • • •

CAPI 1.1
CAPI_SELECTB3_REQ

BRICK-XM
BRICK-XL

B
R

IC
K

-X
S

V
!C

A
S

C
M

-1
B

R
I

C
M

-2
B

R
I

C
M

-1
E

B
R

I

C
M

-P
R

I
0x01

0x01 T.70 NL for circuit switching
(CSPDN) (preset). • • • • • •

0x02 ISO 8208 (DTE/DTE). • • • • • •

0x03 Level 3, IAW T.90, Appendix II. • • • • • •

0x04 Transparent. • • • • • •

0x05 Fax T.30. • •

CAPI 1.1
CAPI_SELECTB2_REQ

BRICK-XM
BRICK-XL

B
R

IC
K

-X
S

V
!C

A
S

C
M

-1
B

R
I

C
M

-2
B

R
I

C
M

-1
E

B
R

I

C
M

-P
R

I

252

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
CAPI 2.0 Enhancements
The BRICK supports the CAPI Version 2.0 standard from February 1994 with the fol-
lowing enhancement.

• Support of Direct Dial In (DDI)

BinTec Extensions to CAPI 2.0
• CAPI 2.0 supported Layer 1, Layer 2, and Layer 3 B-channel protocols1:

CAPI 2.0
Layer 1 Protocols

B
R

IC
K

-X
S

V
!C

A
S

BRICK-XL

BRICK-XM

F
M

L-
8M

D

C
M

-1
B

R
I

C
M

-2
B

R
I

C
M

-1
E

B
R

I

C
M

-P
R

I

0:
64 kBit/s with HDLC framing. This is
the default B1 protocol. • • • • • •

1:
64 kBit/s bit transparent operation
with byte framing from the net-
work.

• • • • • •

2:
V.110 asynchronous operation with
start/stop byte framing. • •

3:
V.110 synchronous operation with
HDLC framing. •

4: T.30 modem for fax group 3. • • •

6:
56 kBit/s bit transparent operation
with byte framing from the net-
work.

• • • • • •

1.DTMF is only supported on the V!CAS and products with a CM-1EBRI.
253

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
CAPI 2.0
Layer 2 Protocols

B
R

IC
K

-X
S

V
!C

A
S

BRICK-XL

BRICK-XM

F
M

L-
8M

O
D

C
M

-1
B

R
I

C
M

-2
B

R
I

C
M

-1
E

B
R

I

C
M

-P
R

I

0:
ISO 7776 (X.75 SLP). This is the
default B2 protocol. • • • • • •

1: Transparent. • • • • • •

3: LAPD IAW Q.921 for D channel X.25 • • • • • •

4: T.30 for fax group 3. • • •

5: Point to Point Protocol (PPP). • • • • • •

7: Modem with full negotiation • • •

CAPI 2.0
Layer 3 Protocols

B
R

IC
K

-X
S

V
!C

A
S

BRICK-XL

BRICK-XM

F
M

L-
8M

O
D

C
M

-1
B

R
I

C
M

-2
B

R
I

C
M

-1
E

B
R

I

C
M

-P
R

I

0:
Transparent. This is the default B3
protocol. • • • • • •

1:
T.90NL with compatibility to T.70NL
IAW T.90 Appendix II. • • • • • •

2: ISO 8208 (X.25 DTE-DTE). • • • • • •
254

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
3: X.25 DCE. • • • • • •

4: T.30 for fax group 3. • • •

5: T.30 for fax group 3 (extended) • •

7: Modem • • •

CAPI 2.0
Layer 3 Protocols

B
R

IC
K

-X
S

V
!C

A
S

BRICK-XL

BRICK-XM

F
M

L-
8M

O
D

C
M

-1
B

R
I

C
M

-2
B

R
I

C
M

-1
E

B
R

I

C
M

-P
R

I

255

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

10
Telephony Services on the BRICK

What’s Covered?

■ Telephony Services on The BRICK

■ What is POTS?
• POTS Interfaces

Dispatching Analog Calls
Internal Calls
External Calls

■ What is TAPI?
• Remote TAPI on the BRICK

TAPI Settings

■ Configuring Telephony Services
• Two workspaces: two telephones,

one V!CAS
• One workspace: one V!CAS, one

telephone, one fax
BIANCA/BRICK Software Reference
Chapter Ten
1TELEPHONY SERVICES

ON THE BRICK
256

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Telephony Services on The BRICK
Telephony Service on the BRICK means that you can connect conventioanal analog de-
vices (telephone, fax, modem, etc.) to the BRICK and place or receive analog calls via
any of the BRICK’s ISDN interfaces.

This allows you to use the BRICK as a PBX (Private Branch exchange) to:

1. Make toll-free calls internally between connected analog devices, or
2. Place (or receive) calls via the ISDN from connected analog devices.

This could be useful for small offices when combined with PCs running Remote
TAPI Client software (included on the Companion CD).

In the simple scenario shown above, the BRICK is used to make inter-office (toll-free)
calls between workstations using the internal telephone numbers. In addition, both
parties can simultaneously place or receive calls from the ISDN using their respective
analog devices.

Although telephony services and the Remote TAPI go together hand in hand, the
rest of this chapter describes using the BRICK’s POTS ports and using the BRICK as a
Remote TAPI Server separately.

NOTE: System software support for telephony services is included
on all BRICK products. However, to take advantage of
telephony services, a CM-AB module must be installed.

Sales Officer Customer Service

Pots A Pots B

ISDN

External Number = 5022
Internal Number = *1

External Number = 5023
Internal Number = *2

Representative
257

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
What is POTS?
In the networking field the term POTS (Plain Old Telephone Service) is often used to
refer to the conventional analog telephone network or analog-based communications
devices. With the CM-AB module installed the BRICK has two POTS ports on it’s back-
plane called POTS A and POTS B, for the attachment of such devices (analog tele-
phone, FAX machine, or modem).

POTS Interfaces
When the CM-AB module is installed an entry in the biboAdmBoardTable will display
the slot number where the board is installed. On the V!CAS and the BRICK-XS Office
slot 3 is always used. Information about the devices connected to the POTS ports is
stored in the potsIfTable. On the V!CAS the table looks as follows.

The fields of the potsIfTable have the following meanings.

Slot Identifies the slot the CM-AB module is installed in.
Unit Identifies the port, POTS A = Unit 0, POTS B = Unit 1.
Type Identifies the types of calls this device will accept.

Possible values include: any, telephony, fax, modem, or disable.
Disable means that the device can not place or accept calls.

These are the default entries created by the system at boot time upon detection of an
installed CM-AB module. potsIfTable entries can only be removed by the system.

mybrick: > potsIfTable

inx Slot(*ro) Unit(*ro) Type(rw)

00 3 0 any

01 3 1 any

mybrick : potsIfTable>
258

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Dispatching Analog Calls

The BRICK dispatches incoming calls (from the ISDN) according to the ISDN Call Dis-
patching algorithm. The dispatching algorithm distributes calls to BRICK services ac-
cording to the "Called Party’s Address" contained in the call packet and the localNum-
ber field of the isdnDispatchTable. Calls dispatched to the pots service (Item=pots) are
given to POTS devices based on additional information contained in the service indi-
cator field of the ISDN Call packet and the Type field mentioned above. The service in-
dicator field simplay specifies the type (FAX, voice, data , etc.) of call.

The different call types and the services they support are as follows:

Internal Calls

Internal calls can be made between devices connected to the BRICK’s POTS ports. This
requires that each POTS device in the connection is assigned an internal number).
Note that these calls are dispatched according to the isdnDispatchTable; therefore it’s
recommended that you assign internal numbers using the format "* <internal number>"
to ensure internal and external MSNs are kept separate. Internal numbers are assigned
to devices in the isdnDispatchTable as follows.

NOTE If the call originated from an analog device, the ISDN can’t
always accurately report the call type and simply reports the
call as being an "analog" call; the actual call may be a FAX or
voice call.

potsType
Accepts calls from

analog network ISDN devices

any analog telephony, fax, modem

telephony analog telephony

fax analog fax

modem analog modem
259

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
External Calls
External calls can also be placed or received from POTS devices. External numbers are
assigned to POTS devices in the same way as for internal numbers with the exception
that the StkNumber field must specify a "real" ISDN Stack number.

Outbound External Calls
Each POTS device must have exactly one outgoing number for outbound external
calls. This means either

1. an external number entry with the Direction field set to both OR
2. an external number entry with the Direction set to outgoing .

Inbound External Calls

isdnDispatchTable POTS A POTS B

StkNumber 31

Item pots

LocalNumber <the telephone number for this device>

Bearer any

Slot <slot number for CM-AB module>

Unit 0 1

Direction both

Mode

UserName

NOTE By default the BRICK automatically creates two dispatch table
entries upon detection of the CM-AB module at boot time.
The default internal numbers for ports A and B are "*1" and
"*2" respectively.
260

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
A POTS device may be configured to respond to different external numbers by cre-
ating multiple external-number entries in the dispatch table and setting the Direc-
tion field to incoming .
261

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
What is TAPI?
TAPI (Telephony Applications Programming Interface) is a programming interface in-
itially defined by Microsoft and Intel for developing Windows-based telephony appli-
cations. A telephony application uses attached telephone equipment to place, accept,
or monitor calls. The Microsoft Dialer (part of Windows) is an example of a TAPI ap-
plication.

TAPI actually consists of two parts.

1. The API defines how applications (like the Microsoft Dialer) interact with the
underlying operating system (Windows 95 or NT).
It gives applications access to Windows’ telephony features.

2. The SPI (Service Provider Interface) defines how the operating system inter-
acts with attached telephony hardware. More than one TSP (Telephone Service
Provider) may be installed on the PC, each one specifies how the OS commu-
nicates with a paticular piece of hardware.

TAPI on Windows 95 and NT systems looks like this.

Telephony
Application

API

SPI

tapi.dll
(16 bit apps)

tapi32.dll
(32 bit apps)

unimdm.tsp rtc_tsp.tsp wan.tsp

TA
PI

Telephony
Application

Telephony
Application

Both dlls are shipped
with Win 95 and NT.
Windows uses the ap-
propriate dll depend-
ing on the user’s ap-
plication (16 or 32 bit).

Hardware specific
*.tsp and *.exe
files provided by the
equipment manufac-
turer.

W
in

d
o

w
s

95
 /

 N
T

Getting StartedLos Geht’s User’s Guide BRICKware
262

Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Remote TAPI on the BRICK
The BRICK can be used as a remote TAPI server, meaning that it can place, accept, and
route calls from a PC on the LAN where the Remote TAPI Client is installed. Remote
TAPI Client software for PCs is included on the Companion CD and is installed from
the BRICKware installation program.

The Remote TAPI Client forwards all TAPI requests made by TAPI applications to
the BRICK via a TCP stream.

The BRICK accepts TAPI client connections via it’s TAPI port.

TAPI Settings

Configuring the BRICK as a TAPI server is straightforward. On the BRICK, all that is
required is that the BRICK’s TAPI port be set. This is defined in the admin table.

The biboAdmTapiTcpPort variable defines the TCP port on the BRICK remote TAPI
applications must connect to. By default the BRICK uses TCP Port 6001. The same val-
ue must be configured on the PC running the Remote TAPI Client program.

The TAPI server can be disabled completely by setting the TAPI port to 0.

Remote

brick.tsp
Win NT:

Win 95:

rtc32ui.exe
rtc32.tsp

tapi2wsa.exe
rtc_spi.tsp

biboAdmTapiTcpPort

TAPI Client
Remote

TAPI Server

Pots A

Pots B

TCP Stream
263

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Configuring Telephony Services
Below are two example configurations showing how the BRICK can be used as a sim-
ple PBX. The Remote TAPI Client could be installed on the computers in these exam-
ples allowing calls to be managed directly from the PC.

Two workspaces: two telephones, one V!CAS
Here we have two workspaces, a Sales Agent and a Customer Service Representative.
Each workspace has an analog telephone that is connected to the BRICK. The sample
configuration shows the entries that would be made to the isdnDispatchTable to allow:

1. Both workspaces receive incoming ISDN calls placed to 5021,
i.e., both phones ring, the first one to pick up gets the call.

2. Each workspace has a separate number for direct calls.
3. Internal calls can be placed between workspaces.

Step 1
Create the internal numbers by locating the entries for the POTS A and POTS B inter-
faces in the isdnDispatchTable. There will be two entries that use Stack 31. You can
identify the A and B interfaces by the Slot:Unit combination. POTS A is always at Unit
0, and POTS B at Unit 1. By default, POTS A uses the internal number "*1" while POTS

Sales Officer Customer Service

Pots A Pots B

ISDN

External numbers: 5021, 5022
Internal number: *1

External numbers: 5021, 5023
Internal number: *2

Representative
264

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
B uses "*2". Since the default values are what we want for our our example setup, we
don’t need to change them.

mybrick: > isdnDispatchTable
inx StkNumber(*rw) Item(*-rw) LocalNumber(rw)

LocalSubaddress(rw) Bearer(rw) Slot(rw)
Unit(rw) Direction(rw) Mode(rw)
UserName(rw)

00 31 pots "*1"
any 3

0 both right_to_left
"default"

01 31 pots "*2"
any 3

1 both right_to_left
"default"

mybrick : isdnDispatchTable>
265

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Step 2 Create an entry for each device’s direct number. Only POTS A can answer
calls to 5022; only POTS B can answer calls to "5023". The first entry is for POTS A, the
second POTS B.

mybrick: isdnDispatchTable > StkNumber=0 Item=pots Slot=3 Unit=0 LocalNumber=5022
Direction=both Mode=right_to_left UserName="default

mybrick: isdnDispatchTable > StkNumber=0 Item=pots Slot=3 Unit=1 LocalNumber=5023
Direction=both Mode=right_to_left UserName="default

mybrick : isdnDispatchTable> isdnDispatchTable
inx StkNumber(*rw) Item(*-rw) LocalNumber(rw)

LocalSubaddress(rw) Bearer(rw) Slot(rw)
Unit(rw) Direction(rw) Mode(rw)
UserName(rw)

02 0 pots "5022"
any 3

0 both right_to_left
"default"

03 0 pots "5023"
any 3

1 both right_to_left
"default"

mybrick : isdnDispatchTable>
266

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
Step 3
Create the entries for our common external number "5021." This will allow both device
to receive calls placed to this number. Again, our first entry is for POTS A the second
is for POTS B.

The configuration is complete. Don’t forget to save your changes to a configuration
file with cmd=save .

mybrick: isdnDispatchTable > StkNumber=0 Item=pots Slot=3 Unit=0 LocalNumber=5021
Direction=incoming Mode=right_to_left User-

Name="default

mybrick: isdnDispatchTable > StkNumber=0 Item=pots Slot=3 Unit=1 LocalNumber=5021
Direction=incoming Mode=right_to_left User-

Name="default

mybrick : isdnDispatchTable> isdnDispatchTable
inx StkNumber(*rw) Item(*-rw) LocalNumber(rw)

LocalSubaddress(rw) Bearer(rw) Slot(rw)
Unit(rw) Direction(rw) Mode(rw)
UserName(rw)

04 0 pots "5021"
any 3

0 incoming right_to_left
"default"

05 0 pots "5021"
any 3

1 incoming

mybrick : isdnDispatchTable>
267

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

IPX
 Ro

uting
C

A
PI

Te
le

p
ho

ny
IP Ro

uting
Brid

g
ing
One workspace: one V!CAS, one telephone, one fax
In this example, we have a workspace consisting of a V!CAS, an analog telephone, and
a FAX device connected to the V!CAS. In this scenario we want to configure the BRICK
so that:

1. Incoming telephony calls are given to the device at POTS A.
2. Incoming FAX calls are given to the device at POTS B.

Step 1
For this example all we need to do is create the external numbers so that both devices
can be reached from the ISDN. Although we won’t be making Internal Calls in this ex-
ample, the "Stack 31" entries will still be present in the isdnDispatchTable.

mybrick: > isdnDispatchTable
inx StkNumber(*rw) Item(*-rw) LocalNumber(rw)

LocalSubaddress(rw) Bearer(rw) Slot(rw)
Unit(rw) Direction(rw)

02 0 pots "777"
telephony 3

0 both

03 0 pots "778"
fax 3

1 both

mybrick : isdnDispatchTable>

Pots A

Pots B

ISDN

Telno: 777

Telno: 778

Home Office
268

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

A

CAPI Information Values

What’s Covered?
BIANCA/
■ CAPI 1.1 Info Values
• Error Class 10
• Error Class 20
• Error Class 31
• Error Class 32
• Error Class 33
• Error Class 34
• Error Class 40
BRICK Software Reference
■ CAPI 2.0 Info Values
• Error Class 00
• Error Class 10
• Error Class 11
• Error Class 20
• Error Class 30
• Error Class 33
• Error Class 34
Appendix A
1CAPI INFORMATION VALUES

CAPI 1.1 and CAPI 2.0 info values with their appropriate error-codes associated with
the capiInfoNumber field are as follows. Both CAPI 1.1 and 2.0 info values are arranged
by error class.
269

w
w

w.
bi

nt
ec

.d
e

C
A

PI Va
lue
CAPI 1.1 Info Values
ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
s

Los Geh
Error Class 10

Formal error messages and errors during management of Message-Queues.

0x1001 Application registration error

0x1002 Wrong application id

0x1003 Message error

0x1004 Wrong capi command

0x1005 Message queue full

0x1006 Message queue empty

0x1007 Messages lost

0x1008 Error during deinstallation

Error Class 20

Addressing errors.

0x2001 Wrong controller

0x2002 Wrong PLCI

0x2003 Wrong NCCI

0x2004 Wrong type

Error Class 31

Incorrect parameters.

0x3101 B-channel incorrectly coded

0x3102 Info mask incorrectly coded

0x3103 Service SI mask incorrectly coded

0x3104 Service EAZ mask incorrectly coded},

0x3105 B2 protocol incorrect
270

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
0x3106 Dlpd incorrect

0x3107 B3 protocol incorrect

0x3108 NCPD incorrect

0x3109 NCPI incorrect

0x310a Flags incorrectly coded

Error Class 32

Unsupported parameters.

0x3201 Controller error

0x3202 Conflict between registrations

0x3203 Function is not supported

0x3204 PLCI not active

0x3205 NCCI not active

0x3206 B2 protocol not supported

0x3207 Change of B2 protocol not possible in this state

0x3208 B3 protocol not supported

0x3209 Change of B3 protocol not possible in this state

0x320a Parameters used not supported in DLPD

0x320b Parameters used not supported in NCPD

0x320c Parameters used not supported in NCPI

0x320d Data length not supported

0x320e DTMF number unknown

Error Class 33

Network errors.

0x3301 Error on setup of D-channel layer 1
271

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
0x3302 Error on setup of D-channel layer 2

0x3303 Error on setup of B-channel layer 1

0x3304 Error on setup of B-channel layer 2

0x3305 Abort D-channel layer 1

0x3306 Abort D-channel layer 2

0x3307 Abort D-channel layer 3

0x3308 Abort B-channel layer 1

0x3309 Abort B-channel layer 2

0x330a Abort B-channel layer 3

0x330b Re-establish B-channel layer 2

0x330c Re-establish B-channel layer 3

Error Class 34

Network messages (whereby xx refers to the related 1TR6 Error-Cause).

0x3400 Normal call clearing

0x3480 Normal call clearing

0x3481 Invalid call reference value

0x3483 Bearer service not implemented

0x3487 Call identity does not exist

0x3488 Call identity in use

0x348a No channel available

0x3490 Requested facility not implemented},

0x3491 requested facility not subscribed

0x34a0 Outgoing calls barred

0x34a1 User Busy

0x34a2 negative GBG Comparison
272

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
0x34a5 as SPV not aloud

0x34b0 Reverse charging not allowed at origination

0x34b1 Reverse charging not allowed at destination

0x34b2 Reverse charging rejected

0x34b5 Destination not obtainable

0x34b8 Number changed

0x34b9 Out of order

0x34ba User not responding

0x34bb User access busy

0x34bd Incoming calls barred

0x34be Call rejected

0x34d9 Network congestion

0x34da Remote user initiated

0x34f0 Local procedure error

0x34f1 Remote procedure error

0x34f2 Remote user suspended

0x34f3 Remote user resumed

0x34ff User info discarded locally

Error Class 40

FAX-G3 Errors.

0x4001 Remote station is not a fax G3 machine

0x4002 Local fax module busy

0x4003 Disconnected during transfer (remote abort)

0x4004 Disconnected before transfer (training error)

0x4005 Disconnected during transfer (local tx data underrun)
273

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

Ethe

rne
t

C
A

PI Va
lue

s

Los Geh
0x4006 Fax module temporary disabled

0x4007 Local disconnect (local abort)

0x4008 Disconnect during transfer (remote procedure error)

0x4009 Remote disconnect (remote abort)

0x400a Line Disconnect during transfer

0x400b Disconnect before transfer

0x400c Local Disconnect (SFF coding error)
C
o

d
e

CAPI 2.0 Info Values
s
Syslo

g
s

G
lo

ssa
ry
Error Class 00

Informative values (corresponding message was processed).

0x0001 NCPI not supported by current protocol, NCPI ignored

0x0002 Flags not supported by current protocol, flags ignored

 0x0003 Alert already sent by another application

Error Class 10

Error information concerning CAPI_REGISTER.

 0x1001 Too many applications

 0x1002 Logical block size too small, must be at least 128 bytes

0x1003 Buffer exceeds 64 kByte

 0x1004 Message buffer size too small, must be at least 1024 byte

 0x1005 Max. number of logical connections not supported

 0x1006 Reserved

 0x1007 The message could not be accepted because of an internal busy
condition

 0x1008 OS Resource error (e.g. no memory)
274

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
 0x1009 COMMON-ISDN-API not installed

 0x100a Controller does not support external equipment

 0x100b Controller does only support external equipment

Error Class 11

Error information concerning message exchange functions.

 0x1101 Illegal application number

 0x1102 Illegal command or subcommand or message length less than 12
octets

 0x1103 The message could not be accepted because of a queue full
condition

0x1104 Queue is empty

0x1105 Queue overflow, a message was lost

 0x1106 Unknown notification parameter

 0x1107 The message could not be accepted because of an internal
busy condition

 0x1108 OS resource error (e.g. no memory)

 0x1109 COMMON-ISDN-API not installed

 0x110a Controller does not support external equipment

 0x110b Controller does only support external equipment

Error Class 20

Error information concerning resource/coding problems.

 0x2001 Message not supported in current state

 0x2002 Illegal Controller/PLCI/NCCI

 0x2003 Out of PLCI

 0x2004 Out of NCCI
275

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
 0x2005 Out of LISTEN

 0x2006 Out of FAX resources (protocol T.30)

 0x2007 Illegal Message parameter coding

Error Class 30

Error information concerning requested services.

0x3001 B1 protocol not supported

 0x3002 B2 protocol not supported

 0x3003 B3 protocol not supported

 0x3004 B1 protocol parameter not supported

 0x3005 B2 protocol parameter not supported

 0x3006 B3 protocol parameter not supported

 0x3007 B protocol combination not supported

 0x3008 NCPI not supported

 0x3009 CIP Value unknown

 0x300a Flags not supported (reserved bits)

 0x300b Facility not supported

 0x300c Data length not supported by correct protocol

 0x300d Reset procedure not supported by current protocol

Error Class 33

Protocol error reasons.

 0x3301 Protocol error layer 1 (broken line or B-channel removed by signalling
protocol)

 0x3302 Protocol error layer 2

 0x3303 Protocol error layer 3

0x3304 Another application got that call
276

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
0x3311 Connecting not successful (remote station is no FAX G3 machine)

0x3312 Connecting not successful (training error)

0x3313 Disconnected before transfer (remote station does not support
transfer mode, e.g. resolution)

0x3314 Disconnected during transfer (remote abort)

0x3315 Disconnected during transfer (remote procedure error,
e.g. unsuccessful repetition of T.30 commands)

0x3316 Disconnected during transfer (local tx data underrun)

0x3317 Disconnected during transfer (local rx data overflow)

0x3318 Disconnected during transfer (local abort)

0x3319 Illegal parameter coding (e.g. SFF coding error)

Error Class 34

Disconnect cause from the network according to ETS 300102-1/Q.931. In the field ‘xx’ the
cause value received within a cause information element (octet 4) from the network is indi-
cated.

0x3481 Unallocated (unassigned) number

0x3482 No route to specified transit network

0x3483 No route to destination

0x3486 Channel unacceptable

0x3487 Call awarded and being delivered in an established channel

0x3490 Normal call clearing

0x3491 User busy

0x3492 No user responding

0x3493 No answer from user (user alerted)

0x3495 Call rejected

0x3496 Number changed

0x349a Non-selected user clearing
277

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
0x349b Destination out of order

0x349c Invalid number format

0x349d Facility rejected

0x349e Response to STATUS ENQUIRY

0x349f Normal, unspecified

0x34a2 No circuit / channel available

0x34a6 Network out of order

0x34a9 Temporary failure

0x34aa Switching equipment congestion

0x34ab Access information discarded

0x34ac Requested circuit / channel not available

0x34af Resources unavailable, unspecified

0x34b1 Quality of service unavailable

0x34b2 Requested facility not subscribed

0x34b9 Bearer capability not authorized

0x34ba Bearer capability not presently available

0x34bf Service or option not available, unspecified

0x34c1 Bearer capability not implemented

0x34c2 Channel type not implemented

0x34c5 Requested facility not implemented

0x34c6 Only restricted digital information bearer capability is available

0x34cf Service or option not implemented, unspecified

0x34d1 Invalid call reference value

0x34d2 Identified channel does not exist

0x34d3 A suspended call exists, but this call identity does not

0x34d4 Call identity in use

0x34d5 No call suspended
278

Getting Startedt’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
0x34d6 Call having the requested call identity has been cleared

0x34d8 Incompatible destination

0x34db Invalid transit network selection

0x34df Invalid message, unspecified

0x34e0 Mandatory information element is missing

0x34e1 Message type non-existent or not implemented

0x34e2 Message not compatible with call state or message type
non-existent or not implemented

0x34e3 Information element non-existent or not implemented

0x34e4 Invalid information element contents

0x34e5 Message not compatible with call state

0x34e6 Recovery on timer expiry

0x34ef Protocol error, unspecified

0x34ff Interworking, unspecified
279

Getting Startedt’s User’s Guide BRICKware Extended Feature

B

Ethernet Framing

What’s Covered?

■ Ethernet Framing Types

• Ethernet II
• Ethernet LLC
BIANCA/BRICK Software Reference
• Novell 802.3
• Ethernet SNAP
• Token Ring
Appendix B
1ETHERNET FRAMING
280

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Ethernet Framing Types

Ethernet II
The en1 interface can be used for IP and IPX traffic. When using this interface, the fol-
lowing header information is added to the beginning of each data packet.

Ethernet LLC
The en1-llc interface can be used for X.25, IPX, and Bridging traffic. The following
header is added to frames sent over this interface.

Destination MAC Address Source MAC Address

Ethernet

Data Field

Type
(2)

(6 bytes) (6 bytes)

(≤1500 bytes)

Destination MAC Address Source MAC Address

LLC Frame

Data Field

Length
(2)

(6 bytes) (6 bytes)

(≤1500 bytes)

Dest.
LSAP

Source
LSAP

LLC

(1) (1) (1)
Control
281

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Ethernet SNAP
The en1-snap interface can be used for IP and IPX traffic. When using this interface, the
following header is added to all frames.

Novell 802.3
The en1-nov802.3 interface is intended specifically for the IPX protocol. The following
header is added to the beginning of IPX frames.

Destination MAC Address Source MAC Address

LLC-Frame

Data Field

Length
Dest.
LSAP

Source
LSAP

LLC Ethernet

(1) (3)(2)

0,0,0

(1) (1)
Control

(2)

(6 bytes) (6 bytes)

(≤1500 bytes)

Type

0xaa 0xaa 0x03

Destination MAC Address Source MAC Address

Frame

Data Field

Length
IPX.

Checksum
(1)(2)

(6 bytes) (6 bytes)

(≤1500 bytes)
(IPX only)

0xffff
282

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Token Ring
The en1-tr interface is intended specifically for token ring

Destination MAC Address Source MAC Address

LLC-Frame

Data Field

Length
Dest.
LSAP

Source
LSAP

LLC Ethernet

(1) (3)(2)

0,0,0

(1) (1)
Control

(2)

(6 bytes) (6 bytes)

(≤8192 bytes)

Type

0xaa 0xaa 0x03
283

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

C

ISDN Error Codes

What’s Covered?

■ Local Causes (BRICK)

■ DSS1 Causes (Euro ISDN)
• Resource unavailable class
• Service/option not available

class
• Service/option not implemented
BIANCA/BRICK Software Reference
class
• Invalid message class
• Protocol error class
• Internetworking class

■ 1TR6 Causes (National ISDN)
Appendix C
1ISDN ERROR CODES

ISDN errors are reported in the isdnCallHistoryTable. Errors originating from the
ISDN are reported in the DSS1Cause and 1TR6Causefc fields, depending on which
service you’re using (Euro ISDN and National ISDN repectively). Errors originating lo-
cally on the BRICK are reported in the LocalCause field.
284

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Local Causes (BRICK)

Local causes are reported in the LocalCause field of the isdnCallHistoryTable

0x01: ipi: Unknown primitive

0x02: ipi: Outstate
Message has been sent at inappropriate state of call reference.

0x03: ipi: Mandatory information element (IE) missing

0x04: ipi: IE not allowed

0x05: ipi: IL_LOOK

0x06: ipi: No link or L2 error
ISDN-cable is not connected, or ISDN-connection is not available or Layer
2 Connection can not be established See isdniftable for Layer 1 details
(Layer1State=F7 means connected i.e. Layer 1 is available). You may also use the pro-
gram bricktrace to display Layer 2 protocol

0x07: ipi: All call references are used

0x08: ipi: Provider has not enough memory

0x09: ipi: Provider is not ready

0x0a: ipi: Busy
An attempt was made to switch off a busy provider.

0x0b: ipi: Channel busy

0x0c: ipi: L3 timer for incoming calls:
The call is received but nobody is responding to this call (please verify if the
destination address and the LocalNumber of isdndispatchtable are corresponding)

0x0d: ipi: L3 restart

0x0e: ipi: L3 error

0x0f: ipi: L1 error

0x10: no controller available

0x11: another application got the call

-1: no information available
285

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

DSS1 Causes (Euro ISDN)

DSS1 causes are reported in the DSS1Cause field of the isdnCallHistoryTable

0x80: Normal call clearing
No error occurred.

0x81: Unallocated (unassigned) number This cause indicates that the destination, requested
by the calling user cannot be reached because, although the number is in a valid for-
mat, it is not currently assigned (allocated).

0x82: No route to specified transit network
This cause indicates that the equipment sending this cause has received a request to
route the call through a particular transit network which it does not recognise. The
equipment sending this cause does not recognise the transit network either, because
the transit network does not exist or because that particular, while it does exist, does
not service the equipment which is sending this cause.
This cause is supported on a network-dependent basis.

0x83: No route to destination
This cause indicates that the called user can not be reached because the network
through which the call has been routed does not serve the destination desired. This
cause is supported on a network-dependent basis.

0x86: Channel unacceptable
This cause indicates the channel most recently identified is not acceptable to the
sending entity for use in this call.

0x87: Call awarded & being delivered
This cause indicates that the user has been awarded the incoming call, and that the
incoming call is being connected to a channel already established to that similar calls
(e.g. packet-mode X.25 virtual calls).

0x90: Normal call clearing
This cause indicates that the call is being cleared because one of the users involved
in the call has requested that the call be cleared.

0x91: User busy
This cause is used when the called user has indicated the inability to accept another
call.
286

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

0x92: User not responding
This cause is used when a user does not respond to a call establishment message with
either an alerting or connect indication within the prescribed period of time allocated.

0x93: No answer from user (user alerted)
This cause is used when a user has provided an alerting indication but has not provided
a connect indication within a prescribed period o f time.

0x95: Call rejected
This cause indicates that the equipment sending this cause does not wish to accept
this call, although it could have accepted the call because the equipment sending
this cause is neither busy nor incompatible.

0x96: Number changed
This cause is returned to a calling user when the called party number indicated by the
calling user is no longer assigned.

0x9a: Non-selected user clearing
This cause indicates that the user has not been awarded the incoming call.

0x9b: Destination out of order
This cause indicates that the destination indicated by the user can not be reached be-
cause the interface to the destination is not functioning correctly. The term not func-
tioning correctly indicates that signalling message was unable to be delivered to the
remote user; e.g. a physical layer or data link layer failure at the remote user, user-
equipment off-line.

0x9c: Invalid number format
This cause indicates that the called user can not be reached because the called par-
ty number is not in a valid format or is not complete.

0x9d: Facility rejected
This cause is returned when a facility requested can not be provided by the network.

0x9e: Response to STATUS ENQUIRY
This cause included in the STATUS message when the reason for generating the STATUS
message was the prior receipt of a STATUS ENQUIRY message.

0x9f: Normal, unspecified
This caused is used to report a normal event only when no other cause in the normal
class applies.
287

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Resource unavailable class

0xa2: No circuit/channel available
This cause indicates that there is no appropriate circuit/channel presently available to
handle the call.

0xa6: Network out of order
This cause indicates that the network is not functioning correctly and that the condi-
tion is likely to last a relatively long period of time; e.g. immediately reattempting the
call is not likely to be successful.

0xa9: Temporarily failure
This cause indicates that the network is not functioning correctly and that the condi-
tion is not likely to last a long period of time; e.g. the user may wish to try another call
attempt almost immediately.

0xaa: Switching equipment congestion
This cause indicates that the switching equipment generating this cause is experienc-
ing a period of high traffic.

0xab: Access Information discarded
This cause indicates that the network could not deliver access information to the re-
mote user as requested. i.e. a user-to-user information, low layer compatibility, high lay-
er compatibility or subaddress as indicated in the diagnostic.

0xac: Requested circuit/channel not available
This cause is returned when the circuit or channel indicated by the requesting entity
cannot be provided by the other side of the interface.

0xaf: Resources unavailable, unspecified
This cause is used to report a resource unavailable event only when no other cause in
the resource unavailable class applies.
288

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Service/option not available class

0xb1: Quality of service unavailable
This cause is used to report that the requested quality of service, as defined in the ITU-
T recommendation X.213, cannot be provided (e.g. throughput or transit delay cannot
be supported).

0xb2: Requested facility not subscribed
This cause indicates that the requested supplementary service could not be provided
by the network because the user has not completed the necessary administrative ar-
rangements with its supporting network.

0xb9: Bearer Capability not authorized
This cause indicates that the user has requested a bearer capability which is imple-
mented by the equipment which generated this cause but the user is not authorized
to use.

0xba: Bearer Capability not presently available
This cause indicates that the user has requested a bearer capability which is imple-
mented by the equipment which generated this cause but which is not available this
time.

0xbf: Service or option not available, unspec.
This cause is used to report a service or option not available event only when no other
cause in the service or option not available class applies.

Service/option not implemented class

0xc1: Bearer capability not implemented
This cause indicates that the equipment sending this cause does not support the bear-
er capability requested.

0xc2: Channel type not implemented
This cause indicates that the equipment sending this cause does not support the chan-
nel type requested.

0xc5: Requested facility not implemented
This cause indicates that the equipment sending this cause does not support the re-
quested supplementary service.
289

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

0xc6: Only restricted digital info. bearer cap. is available
This cause indicates that one equipment has requested an unrestricted bearer servic-
es but that the equipment sending this cause only supports the restricted version or the
restated bearer capability.

0xcf: Service or option not implemented, unspecified
This cause is used to report a service or option not implemented event only when no
other cause in the service or option not implemented class applies.

Invalid message class

0xd1: Invalid call reference value
This cause indicates that the equipment sending this cause has received a message
with a call reference which is not currently in use on the user-network interface.

0xd2: Identified channel does not exist
This cause indicates that the equipment sending this cause has received a request to
use a channel not activated on the interface for a call. For example, if a user has sub-
scribed to those channels on a primary rate interface numbered from 1 to 12 and the
user equipment or the network attempts to use channels 13 to 30 this cause is gener-
ated.

0xd3: A suspended call exist, but call identity does not
This cause indicates that a call resume has been attempted with a call identity which
differs from that in use for any presently suspended call(s).

0xd4: Call identity in use
This cause indicates that the network has received a call suspend request. The call sus-
pend request contained a call identity (including the null call identity) which is already
in use for a suspended call within the domain of interfaces over which the call might
be resumed.

0xd5: No call suspended
This cause indicates that the network has received a call resume request. The call
resume request contained a call identity information element which presently does
not indicate any suspended call within the domain of interfaces over which calls may
be resumed.

0xd6: Call with the requested call id has been cleared
This cause indicates that the network has received a call resume request. The call
290

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

resume request contained a call identity information element which once indicated
a suspended call; however, that suspended call was cleared while suspended (either
by network timeout or by the remote user).

0xd7: Service or option not available
This cause indicates that the requested service or option is not available or is rejected.

0xd8: Incompatible destination
This cause indicates that the equipment sending this cause has received a request to
establish a call which has a low layer compatibility, high layer compatibility or other
compatibility attributes (e.g. data rate) which cannot be accommodated.

0xdb: Invalid transit network selection
This cause that a transit network identification was received, which is of an incorrect
format.

0xdf: invalid message, unspecified
This cause is used to report an invalid message event only when no other cause in the
invalid message class applies.

Protocol error class

0xe0: Mandatory information element is missing
This cause indicates that the equipment sending this cause has received a message
which is missing an information element which must be present in the message before
that message can be processed.

0xe1: message type non-existent or not implemented
This cause indicates that the equipment sending this cause has received a message
with a message type it does not recognise either because this is a message not de-
fined or defined but not implemented by the equipment sending this cause.

0xe2: message not compatible with call state
This cause indicates that the equipment sending this cause has received a message
such that the procedures do not indicate that this is a permissable message to receive
while in the call state, or a STATUS message was received indicating an incompatible
call state.

0xe3: Information element non-existent or not implemented
This cause indicates that the equipment sending this cause has received a message
which includes information elements not recognised because the information ele-
291

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

ment identifier is not defined or it is defined but not implemented by the equipment
sending the cause. However, the information element is not required to be present in
the message in order for the equipment sending the cause to process the message.

0xe4: invalid information element contents
This cause indicates that the equipment sending this cause has received an informa-
tion element which it has implemented; however, one or more fields in the information
element are coded in such a way which has not been implemented by the equip-
ment sending this cause.

0xe5: message not compatible with call state
This cause indicates that the equipment sending this cause has been received which
is incompatible with the call state.

0xe6: recovery on timer expiry
This cause indicates that a procedure has been initiated by the expiry of a time in as-
sociation with error handling procedures.

0xef: Protocol error, unspecified
This cause is used to report a protocol error event only when no other cause in the pro-
tocol error class applies.

Internetworking class

0xff: Internetworking, unspecified
This cause indicates that there has been interworking with a network which does not
provide causes for functions it takes; thus the precise cause for a message which is be-
ing sent cannot be ascertained
292

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

1TR6 Causes (National ISDN)

1TR6 causes are reported in the 1TR6Cause field of the isdnCallHistoryTable

0x81: Invalid call reference value

0x83: Bearer service not implemented
indicates that a connection with a specific Service Indicator (SI) cannot be set up, ei-
ther at the calling or called party’s end Certain SIs have to be applied for and cleared
for ISDN basic access and for PBXs

0x87: Call identity does not exist
The call identity used does not bear relation to any call available for matching. This
happens for instance when an attempt is made to resume a call using the function
IL_RESUME with the wrong call identity

0x88: Call identity in use

0x8a: No Channel available
All available B channels of the ISDN access are occupied (either with other end-de-
vices on the S0 bus or other connections on the same end-device.

0x90: Requested facility not implemented

0xa0: Outgoing calls barred
Outgoing calls are barred from this ISDN access. This is often the case with PBXs if they
are restricted locally or nationally.

0xa1: User Busy
Corresponds to an engaged tone on a telephone. All the called party’s B channels
are busy, the exchange is overloaded or no free trunk was available from the local
PBX. (Used instead of 0xd9).

0xa2: CUG, access denied
The called party is member of a closed user group. In these user groups, which are set
up by the German Post Office in Germany, a call is only connected if the caller is mem-
ber of the same group.

0xa3: Non existent CUG

0xa5: not permitted as SPV

0xb0: Reverse charging not allowed at origination

0xb1: Reverse charging not allowed at destination

0xb2: Reverse charging rejected
293

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

0xb5: Destination not obtainable
The same meaning as “The number you have dialled is not available, please try again”
message. Also appears (after timeout) when the telephone number was incomplete.

0xb8: Number changed
Occurs when the called number was too long. This can be the case when the EAZ was
included in the dialled number.

0xb9: Out of order
The number dialled is out of order or temporarily not available.

0xba: User not responding
The called party is not accepting or responding to the call for one of the following rea-
sons:
- The subscriber’s end-device is not switched on or not connected
- The required EAZ was not communicated
- An incorrect number was dialled
- The required SI was not communicated

0xbb: User access busy
Corresponds to an engaged tone on a telephone. All the called party’s B channels
are busy, the exchange is overloaded or the PBX could not get a free trunk line (in-
stead of 0xd9).

0xbd: Incoming calls barred
Incoming calls are not allowed for the called party (barred) or are not possible (e.g.
because the line is out of order).

0xbe: Call rejected
The called party has refused the call or is not allowed to receive the call.

0xd9: Network congestion
The ISDN network is congested (all-trunks-busy condition) at some point. This can occur
when calling a PBX and all trunk lines are engaged

0xda: Remote user initiated

0xf1: Remote procedure error

0xf2: Remote user suspended

0xf3: Remote user resumed

0xf4: User info discarded locally
294

Getting StartedLos Geht’s User’s Guide BRICKware Extended Feature

D

Syslog Messages

What’s Covered?
BIANCA/
■ System Messages
• ISDN
• IPX
• CAPI
• PPP
• Bridge
• Config
• SNMP
BRICK Software Reference
• INET
• Token
• Ether
• Radius
• RIP
• Frame Relay
• Modem
• TAPI
Appendix D
1SYSLOG MESSAGES
295

w
w

w.
bi

nt
ec

.d
e

C
A

PI Va
lue
System Messages
ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
s

Los Geh
ISDN
(biboAdmSyslogSubject = isdn)

biboAdmSyslogMessage ~Level

slot <slot>, unit <unit>, chan <chan>: modem connect ...

A modem connect occurred for the ISDN device with the
given slot, unit and b-channel. The connect baud rate
will also be given.

debug

stack <stkno>: physical disconnect

A physical disconnect occurred for the given ISDN stack.
This event occurs due to Power Source 1 (PS1) being lost,
for example when the ISDN plug is removed from the
ISDN socket.

debug

stack <stkno>: activate

The layer 1 of the given ISDN stack has been activated,
reached the state F7 and is now ready for communica-
tion.

debug

stack <stkno>: deactivate

The layer 1 of the given ISDN stack has been deacti-
vated.

debug

stack <stkno>: TEI assign <stkno>

The given automatic TEI has been assigned to the given
ISDN stack by the network.

debug

stack <stkno>: TEI remove

The automatic TEI has been removed from the given ISDN
stack, because a TEI-REMOVE message has been
received from the network

debug

stack <stkno>: MDL_ERROR ...

The given MDL ERROR (management data link error) has
been occurred on the given ISDN stack.

debug
Getting Startedt’s User’s Guide BRICKware Extended Feature

296

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
stack <stkno>: disconnect cause: (0x...)

A call disconnect occurred on the given ISDN stack with
the given cause (See Appendix C: ISDN Error Codes).

debug

stack <stkno>: AT&T 5ESS SPID '...' negotiation succeeded info

stack <stkno>: NI-1 SPID '...' negotiation succeeded info

stack <stkno>: DMS-100 SPID '...' negotiation succeeded

SPID negotiation succeeded on the given ISDN switch
with the given SPID.

info

isdnlogind: receive call from <number> si: <ind> ai: <info>
chi 0x...

An incoming call has been received by the ISDNLOGIN
service from the given ISDN number. The service indica-
tor (<ind>) and additional information (<info>) values
(1TR6) are given as well as the selected ISDN channel.

info

isdnlogind: ignoring call from <number> - no matching
isdnloginAllowTable entry

An incoming ISDN call dispatched for the ISDNLOGIN
service was ignored, because the isdnLoginAllowTable is
not empty and does not contain an entry for the calling
ISDN number.

info

isdnlogind: accept call from <number>

An ISDN call from the given ISDN address was accepted
by the ISDNLOGIN service.

info

stack <stkno>: q931: mandatory information element
missing

A call control message has been received with a missing
mandatory information element.

err

stack <stkno>: AT&T 5ESS SPID ’<spid>’ wrong -> restricted
service

The given SPID configured in the isdnStackTable is not
valid for a AT&T 5ESS ISDN switch. The ISDN service will be
restricted

err

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

297

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
IPX
(biboAdmSyslogSubject = ipx)

stack <stkno>: NI-1 SPID '<spid>’ negotiation failed err

stack <stkno>: DMS-100 SPID ’<spid>’ negotiation failed

SPID negotiation failed on the given ISDN switch with the
given SPID.

err

biboAdmSyslogMessage ~Level

RIP/SAP: low memory crit

RIP/SAP: no ipxAdminTable crit

RIP/SAP: no ipxAdvSysTable crit

RIP/SAP: no IPX license info

config error: equal internal netnums err

no common routing protocol err

exchange failed: too many retries err

link down during parameter exchange err

parameter exchange timed out err

NAK received, check ipxBasicSysTable err

unknown packet type <typeno> received err

circuit <cirxinx>’s net number not set err

open link for pkt. type <typeno>, dest. socket <socketno> debug

Internal Netnumber not set err

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

298

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
CAPI
(biboAdmSyslogSubject = capi)

PPP
(biboAdmSyslogSubject = ppp)

Internal Netnumber <netno> already in use err

circuit <circinx>’s netnumber <netno> already in use err

ipxDestTable has changed debug

ipxDestServTable has changed debug

invalid CircIndex <circinx> for static route err

invalid CircIndex <circinx> for static service err

remote router to net <netno> does not support SPX
spoofing

info

re-broadcasting NetBIOS packet debug

biboAdmSyslogMessage ~Level

got too long TCP message err

got too long CAPI message err

got unknown CAPI primitive <primno> err

CAPI message <primno> too short, len <cnt>
should be <cnt>

err

CAPI message <primno> STRUCT too short, len <cnt>
should be <cnt>

err

APPL <applno> PLCI <plcino> NCCI <nccino> CMD
<cmdno> CAPIINFO <infono>

debug

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

299

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
biboAdmSyslogMessage ~Level

Channel Delivery Messages:

request to drop one channel, stack: <stkno> debug

drop one channel, stack: <stkno> debug

Login Procedure Messages:

login, send: <string> debug

login, expected sequence (<string>) received debug

login, rcvd: <string> debug

PPP/Multi-link PPP Messages:

can't join non-MP link in non-MP mode

can't join MP link in non-MP mode

debug

packet overflow !

to many not currently reassembled MLP fragments
received

err

PPP keep alive failed err

Establishing/Closing Connection Messages:

no outgoing dial entry debug

specified isdn hardware not available

The specified ISDN hardware was not available.

err

no matching dispatch table entry

A matching isdnDispatchTable entry was not found.

debug

no matching screening indicator err

dial number <called number> debug

dialin from <calling number> to local number
<local number>

debug
Getting Startedt’s User’s Guide BRICKware Extended Feature

300

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
callback or call collision detected debug

<ifc> is blocked, link establishment failure

Interface <ifc> is blocked due to link establishment failure

debug

interface <ifc> is administratively down

Incoming call, cannot be accepted because interface
<ifc> is currently down.

debug

call accepted, interface <ifc> debug

call accepted, call not identified by number

Inband Authentication follows

debug

 <incoming/outgoing> connection established debug

call cleared, specified incoming number doesn't match

Inband Authentication case, call accepted and WAN
partner identified, incoming number differs from correlat-
ing dialtable entry.

err

leased line connection closed, duration <duration> sec-
onds, <bytes> bytes received, <bytes> bytes sent

Leased line connection was disconnected. Time and
transmit/receive statistics are shown.

info

<incoming/outgoing> link closed, duration <duration>
seconds, <bytes> bytes received, <bytes> bytes sent,
<charging units> charging units (no AOCE)

An incoming (or outgoing) link was closed. Time and
transmit/receive statistics are shown.

info

<maxconn> connections exceeded debug

LCP (Link Control Protocol) Messages:

loopback detected err

IPCP (Internet Protocol Control Protocol) Messages:

 local IP address is <IP address>, remote is <IP address> info

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

301

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
remote IP address assigned to <IP address> info

VJHC negotiated, maxslotid is <negotiated max slot ID>

Van Jacobson TCP/IP header compression negotiated
successfully.

info

remote rejected mandatory IPCP option <option> debug

LZS Stac Compression Messages:

no valid license for Stac LZS debug

no Stac LZS negotiated, maximum bandwidth exceeded debug

no function module BIANCA/STAC found err

unsupported boardtype for Stac LZS compression debug

Cisco compatible Stac LZS packet format debug

CCP Stac LZS negotiation successful debug

remote rejected mandatory CCP option <option> debug

reset decompression history (<history number>) debug

PAP (Password Authentication Protocol) Messages:

PAP auth failed for <id> err

PAP auth failed: remote rejected ident/secret err

PAP auth failed: too many retries err

CHAP (Challenge Handshake Authentication Protocol) Messages:

CHAP auth failed for <id> err

CHAP auth rcvd failure: <failure> err

CHAP auth failed: too many retries err

authentication failed completely notice

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

302

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
Bridge
(biboAdmSyslogSubject = bridge)

PAP and CHAP Messages:

call identified for host <id> debug

no matching PPP entry found for host <host> warning

PAP/CHAP authentication failure err

Callback Messages:

incoming call cleared, PPP Callback not enabled

Incoming authentication, callback requested by partner
via LCP, but not configured.

err

use configured dial number for callback debug

use negotiated dial number for callback debug

incoming call cleared debug

callback follows in <callback delay> seconds

Delayed callback.

debug

callback follows at once debug

incoming call cleared, callback initiated

CLID, callback initiated.

debug

Shorthold Messages:

shorthold timeout reached

Static shorthold timeout reached.

debug

dynamic shorthold, <sec> seconds after last advice of
charge

Dynamic shorthold timeout reached.

debug

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

303

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
Config
(biboAdmSyslogSubject = config)

SNMP
(biboAdmSyslogSubject = snmp)

biboAdmSyslogMessage ~Level

no license info

no mem err

dialup <ifc> debug

sent TCN thru port <ifc> in state <stateno> debug

received CFG thru port <ifc> in state <stateno> debug

CFG supersedes port <ifc> debug

received TCN in state <stateno> debug

configuration timed out on ifindex <ifc> debug

TCN timer expired debug

biboAdmSyslogMessage ~Level

flash error crit

tftp: <error message> err

tftp: wrong line <lineno> in file <filename> err

unknown object err

unknown table err

biboAdmSyslogMessage ~Level

no mem available err
Getting Startedt’s User’s Guide BRICKware Extended Feature

304

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
INET
(biboAdmSyslogSubject = inet)

sent TRAP(<type>,<no>) <cnt> bytes to
<ipno> Port <portno>

debug

sent TRAP(<type>,<no>) <cnt> bytes to circindex
<no> Port <portno>

debug

snmpInASNParseErr from <ipno> Port <portno> debug

received error: <errmsg> from <ipno> Port <portno> debug

send error: <errmsg> to <ipno> Port <portno> debug

snmpInBadVersion from <ipno>Port <portno> debug

biboAdmSyslogMessage ~Level

dialup ifc <ifc> prot <proto> <SrcIP>:<Port#> ->
<DestIP>:<Port#> ...

The given interface is dynamically dialed up, because a
packet has to be routed to it.

The protocol of the packet (1=ICMP, 6=TCP, 17=UDP, ...)
The source IP address : port number.
The destination IP address : port number.
If enabled in ipExtIfAccessReport, a dump of the
packet also follows.

debug

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

305

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
NAT: delete session on ifc <ifc> prot <proto>
<Int>:<Port#>/<Ext>:<Port#> <-> <Rem IP Addr>:<Port#>

A NAT session is deleted on the given interface. The addi-
tional info is:

Protocol (1=ICMP, 6=TCP, 17=UDP, ...) .
Internal local IP address : portnumber .
External local IP address : portnumber .
Remote IP address : portnumber.

debug

NAT: new outgoing session on ifc <ifc> prot <proto>
<Int>:<Port#>/<Ext>:<Port#> -> <Rem IP Addr>:<Port#>

A new outgoing NAT session is created on the given inter-
face. The additional info is:

Protocol (1=ICMP, 6=TCP, 17=UDP, ...).
System Interface.
Internal local IP address : portnumber .
External local IP address : portnumber .
Remote IP address : portnumber.

debug

NAT: new session on ifc <ifc> prot <proto> <Int>:<Port#>/
<Ext>:<Port#> -> <Rem IP Addr>:<Port#>

A new NAT session is created on the given interface. The
additional info is as shown in the previous message.

debug

 NAT: new expected session on ifc <ifc> prot <proto>
<Int>:<Port#>/<Ext>:<Port#> -> <Rem IP Addr>:<Port#>

A new incoming NAT session is created on the given inter-
face. This session was expected due to an existing IP ses-
sion. For example, an FTP data session will be expected,
when the corresponding portnumbers have been
exchanged on a FTP control session The additional info is:

Protocol (1=ICMP, 6=TCP, 17=UDP, ...)
Internal local IP address : portnumber
External local IP address : portnumber
Remote IP address : portnumber

debug

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

306

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
NAT: new incoming session on ifc <ifc> prot <proto>
<Int>:<Port#>/<Ext>:<Port#> -> <Rem IP Addr>:<Port#>

A new incoming NAT session is created on the given inter-
face. The session is preconfigured in the
ipNatPresetTable. The additional info is:

Protocol (1=ICMP, 6=TCP, 17=UDP, ...).
Internal local IP address : portnumber.
External local IP address : portnumber.
Remote IP address : portnumber.

debug

refuse from ifc <ifc> prot <ptoto> <Src IP>:<Port#> ->
<Dest IP>:<Port#>

An IP packet is being refused due to packet filtering with
acces lists. The packet has been received from the given
interface. The additinal info is:

The protocol of the packet (1=ICMP, 6=TCP, 17=UDP, ...).
The source IP address : port number.
The destination IP address : port number.

info

NAT: refused incoming session on ifc <ifc> prot <ptoto>
<Ext IP>:<Port#> <- <Rem IP>:<Port#> ...

An incoming session in the given interface has been
refused, because it was neither expected, nor preconfig-
ured in the ipNatPresetTable. The additional info is:

Protocol (1=ICMP, 6=TCP, 17=UDP, ...)
External local IP address : portnumber
Remote IP address : portnumber

A dump of the message may follow, if enabled in
ipExtIfAccessReport for the interface .

info

cannot use undefined ifc <ifc> for routing

The given target interface is configured in the
ipRouteTable or the ipExtRouteTable. This interface does
not exist and can thus not be used for routing.

err

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

307

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
Token
(biboAdmSyslogSubject = token)

cannot use ifc <ifc> for routing (ifc does not support IP)

The given target interface is configured in the
ipRouteTable or the ipExtRouteTable. This interface does
not support IP and can thus not be used for routing

err

 NAT: no ipaddress defined on ifc <ifc>

There is no IP Address defined for the given interface, and
NAT has been enabled. An interface’s IP address must be
defined for NAT to work.

err

biboAdmSyslogMessage ~Level

slot <slot#>: BUD Error SIFCMD=<command> err

slot <slot#>: Hardware Error err

slot <slot#>: DMA test failed err

slot <slot#>: Initialization Error Code=... err

slot <slot#>: Open failed (... in ...) err

slot <slot#>: Ring status = <state> err

TMS380SRA diagnostics failed err

TMS380SRA does not exist err

SRA bad options err

SRA error parm0=0x... err

slot <slot#>: Adapter check sts=0x... parm0=0x...
parm1=0x... parm2=0x...

err

slot <slot#>: cmd reject rej_sts=0x... rej_cmd=0x... err

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

308

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
Ether
(biboAdmSyslogSubject = Ether)

slot <slot#>: Open Error code 0x... err

slot <slot#>: read errlog failed err

slot <slot#>: read adapter failed err

slot <slot#>: modify open parms failed err

slot <slot#>: unknown cmd (cmd=0x... parm0=0x...
parm1=0x...)

err

slot <slot#>: receive suspended err

slot <slot#>: transmit list error 0x... err

slot <slot#>: unexpected interrupt <int> err

slot <slot#>: Ring insertion succeeded debug

slot <slot#>: Adapter closed debug

slot <slot#>: Ring status = <state> debug

biboAdmSyslogMessage ~Level

slot <slot#>: out of sync sts=.../... size=.../...\n

Internal synchronization problem on the ethernet con-
troller in the specified slot. Automatic recovery occurs.
The additional information is of no use for the user.

warning

slot <slot#>: Excessive Deferral (Transmission aborted) -
Cable Problem?

The given ethernet controller reports "excessive deferal"
on the network. This may be due to a cable problem.

warning

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

309

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
Radius
(biboAdmSyslogSubject = radius)

slot <slot#>: No Carrier Sense - Cable Problem ?

The given ethernet controller reports "no carrier sense" on
the network. This may be due to a cable problem.

warning

slot <slot#>: CD Heartbeat lost

The heartbeat signal between the transceiver and the
Ethernet controller did not occur for the given slot. This is
usually the case, when an external transceiver is con-
nected to the AUI-interface and not support the heart-
beat signal, or the heartbeat signal is switched off on the
external transceiver.

warning

slot <slot#>: sonic smuttier hung, resetting

The transmitter of the ethernet controller stopped work-
ing and is reset automatically.

warning

slot <slot#>: Excessive Collisions (Transmission aborted)

The given ethernet controller reports "excessive collision".
The transmission of the current packet is aborted and
continued with the next packet. This warning may occur
due to very high network load, to problems with the net-
work itself or cabling problems.

debug

biboAdmSyslogMessage ~Level

Inband RADIUS Messages:

cannot accept call for Radius client <id> debug

call identified for Radius client <id> debug

Radius PAP auth failed for <id> notice

Radius CHAP auth failed for <id> notice

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

310

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
RIP
(biboAdmSyslogSubject = rip)

Frame Relay
(biboAdmSyslogSubject = fr)

Outband RADIUS Messages:

 outband identification ok debug

 outband identification failed, try inband debug

 outband identification timed out, try inband debug

biboAdmSyslogMessage ~Level

ROUTE ADD ifc <ifc> Dest <dest_addr> Mask <netmask>
Metric <metric> Nexthop <ip_address> Age <age>

debug

ROUTE DEL ifc <ifc> Dest <dest_addr> Mask <netmask>
Metric <metric> Nexthop <ip_address> Age <age>

debug

ROUTE CHANGE ifc <ifc> Dest <dest_addr> Mask <mask>
Metric <metric> Nexthop <ip_address> Age <age>

debug

biboAdmSyslogMessage ~Level

Be exceeded - packet discarded
unknown ARP protocol <proto>

debug

no license info

no more than 256 interfaces allowed error

 DLCI out of range: <dlci> notice

biboAdmSyslogMessage ~Level
Getting Startedt’s User’s Guide BRICKware Extended Feature

311

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Los Geh
Modem
(biboAdmSyslogSubject = modem)

TAPI
(biboAdmSyslogSubject = tapi)

biboAdmSyslogMessage ~Level

no more modems available <inuse>/<registered>/
<maxmodems>

debug

biboAdmSyslogMessage ~Level

no license info
Getting Startedt’s User’s Guide BRICKware Extended Feature

312

Glossary of Networking Terms
10BaseT – An IEEE standard (802.3) for operating 19 Mbps Ethernet net-
works with twisted pair cabling and a wiring hub. See also UTP.

1TR6 – An ISDN D-channel protocol that was used in Germany prior to the
widespread implementation of the DSS1. Currently 1TR6 is being replaced
by the DSS1 protocol.

ARP (Address Resolution Protocol) – The protocol in the TCP/IP suite
that is used to obtain the network point of attachment address (usually the
MAC or ethernet address) of a host corresponding to it’s internet address.

AUI (Autonomous Unit Interface) – Also called an Attachment Unit Inter-
face. This refers to the 15 pin D connector and cables that connect single and
multiple channel equipment in an Ethernet transceiver.

Address Resolution Protocol – See ARP.

Agent – The client-server model, the part of the system that performs infor-
mation preparation and exchange on behalf of a client or server application.

Autonomous Unit Interface – See AUI.
1GLOSSARY OF
NETWORKING TERMS

The networking field is pockmarked with acronyms that are often used inconsistently
throughout the trade. Following is a brief glossary of some of the terms used within
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

313

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

B-Channel – ISDN bearer service channel operating at 64 kbps, carrying
user voice or data; circuit-, packet-, or frame-mode services may be obtained
on this channel.

BRI (Basic Rate Interface) – One of the access methods to an ISDN, com-
prising two B-channels and one D-channel (often referred to as 2B+D).

Bandwidth – The width of a channel’s passband (e.g., the bandwidth of a
channel with a 300- to 3400-Hz passband is 3100 Hz, or 3.1 kHz).

Basic Rate Interface – See BRI.

Bearer service – The basic set of services offered over the B-channel that
provides the capability to exchange signals between two user-network in-
terfaces.

BootP – The Bootstrap Protocol is a UDP/IP-based protocol which allows a
booting host to configure itself dynamically and without user supervision.

Bridge – Bridges can usually be made to filter packets, that is, to forward
only certain traffic. Related devices are: repeaters which simply forward
electrical signals from one cable to another, and full-fledged routers which
make routing decisions based on several criteria.

Broadcast – A means of transmitting a message to all devices connected to
a network. Normally, a special address, the broadcast address, is reserved to
enable all the devices to determine that the message is a broadcast message.

Bus – A network transmission medium to which all the devices are at-
tached. Each transmission propagates the length of the medium and is
therefore received by all other devices connected to the medium.

CAPI (Common ISDN Application Programming Interface) – An appli-
cation programming interface standard resulting from close cooperation
with leading ISDN manufacturers. CAPI defines the entity and the protocol
that applications must use when communicating with this entity.

CGI (Common Gateway Interface) – A standard for running external
programs from a World-Wide Web (HTTP) server. CGI specifies how to pass
arguments to the executing program as part of the HTTP request. Common-
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

314

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

ly, the program will generate an HTML document which will be passed
back to the browser but it can also request redirection to a different docu-
ment.

CCIT (Intergraph and Telephone Consultative Committee) – A com-
mittee of the ITU, creating recommendations regarding public telegraph,
telephone, and data networks. Renamed ITSS in March 1993.

CHAP (Challenge Handshake Authentication Protocol) – Under PPP,
each system may require it’s peer to authenticate itself using the CHAP pro-
tocol or the PAP protocol.

CLID (Calling Line ID) – A telephone company service that delivers the
calling party’s telephone number to the called party during the ring cycle;
also called “automatic number identification”.

CRC (Cyclic Redundancy Check) – A method used for the detection of
errors when data is being transmitted. A CRC is a numeric value computed
from the bits in the message to be transmitted. It is appended to the tail of
the message prior to transmission and the receiver then detects the presence
of errors in the received message by computing a new CRC.

CSMA/CD – An abbreviation for carrier sense, multiple access with colli-
sion detection. It is a method used to control access to a shared transmission
medium such as coaxial cable bus to which a number of stations are con-
nected. A station wishing to transmit a message first senses (listens) the me-
dium and transmits a message only if the medium is quiet—no carrier
present. Then, as the message is being transmitted the station monitors the
actual signal on the transmission medium. If this is different from the signal
being transmitted, a collision is said to have occurred and been detected.
The station ceases transmission and retries again later.

Calling Line ID – See CLID.

Challenge Handshake Authentication Protocol – See CHAP.

Coaxial Cable – A type of transmission medium consisting of a center
conductor and a cocentric outer conductor. It is used when higher data
transfer rates (greater than 1 Mbps) are required.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

315

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Common Gateway Interface – See CGI.

Common ISDN Application Programming Interface – See CAPI.

Cyclic Redundancy Check – See CRC.

DCE (Data Circuit-terminating Equipment) – The name given to the
equipment provided by the network authority (provider) for the attachment
of user devices to the network. It takes on different forms for different types
of networks.

DHCP (Dynamic Host Configuration Protocol) – A protocol introduced
by Microsoft. The protocol provides a means to dynamically allocate IP ad-
dresses (and other network information) to PCs running on a Microsoft
Windows local area network. The system administrator assigns a range of
addresses to a DHCP server and each PC is configured to request its IP ad-
dress from the server. The request and grant process uses a lease concept
with an adjustable time period.

DLCI (Data Link Connnection Identifier) – In a Frame Relay network, a
DLCI uniquely identifies a single virtual circuit. It is important to note that
a DLCI is only significant to the local side of a point-to-point link.

DSS1 (Digital Subscriber Signalling System) – The ISDN user-network
interface, comprising a data link layer and network layer; described in
CCITT (now ITU) Recommendations Q.920-series (LAPD/LAPF) and
Q.930-series recommendations, respectively.

DTE (Data terminal equipment) – A generic name for any user device
connected to a data network. It thus includes such devices as visual dis-
plays, computers, and office workstations.

D-Channel – The ISDN out-of-band signalling channel, carrying ISDN
user-network messages; it can also be used to carry packet- or frame-mode
user data. The D-channel operates at 16 kbps in the BRI and 64 kbps in the
PRI.

Data Circuit-terminating Equipment – See DCE.

Data Link Connnection Identifier – See DLCI.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

316

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Data Link Layer – It is concerned with the reliable transfer of data (no re-
sidual transmission errors) across a data link being used.

Data Link Connection Identifier – See DLCI.

Data terminal equipment – See DTE.

Datagram – A self-contained packet of information that is sent through the
network with minimum protocol overheads.

Digital Subscriber Signalling System – See DSS1.

Domain – In the Internet, a part of a naming hierarchy. Syntactically, an In-
ternet domain name consists of a sequence of names (labels) separated by
periods (dots), e.g., “tundra.mpk.ca.us.” In OSI, “domain” is generally used
as an administrative partition of a complex distributed system, as in MHS
Private Management Domain (PRMD), and Directory Management Do-
main (DMD).

Dotted decimal notation – The syntactic representation for a 32-bit inte-
ger that consists of four 8-bit numbers written in base 10 with periods (dots)
separating them. Used to represent IP addresses in the Internet as in:
192.67.67.20

Dynamic host configuration protocol – See DHCP.

EAZ (Endgeräteauswahlziffer) – In the 1TR6 protocol, the last digit of the
ISDN number, which combined with the service indicator allows a specific
end station to be identified.

ET (Exchange Termination) – That portion of the local exchange that as-
sumes the responsibility for LE’s communication with the other network
components of the ISDN.

ETSI (European Telecommunications Standards Institute) – An organi-
zation, headquartered in France, responsible for creating common telecom-
munications standards for the European market.

Ethernet – A local area network that connects devices (computers, print-
ers, etc.) via twisted pair or coaxial cabling.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

317

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Encapsulation – A technique used by layered protocols in which a layer
adds header information to the protocol data unit (PDU) from the layer
above. As an example, in Internet terminology, a packet would contain a
header from the physical layer, followed by a header from the network layer
(IP), followed by a header from the transport layer (TCP), followed by the
application protocol data.

Endgeräteauswahlziffer – See EAZ.

European Telecommunications Standards Institute – See ETSI.

Exchange Termination – See ET.

FCS (Frame check sequence) – A general term given to the bits append-
ed to a transmitted frame or message by the source to enable the receiver to
detect possible transmission errors.

FTP (File Transfer Protocol) – The TCP/IP protocol (and program) used to
transfer files between hosts.

File Transfer Protocol – See FTP.

Filter – A rule that defines a set of packets. Filters can be used to specify a
set of packets that may or may-not-be routed.

Firewall – A mechanism consisting of hardware and/or software that let’s
an administrator control the types of packets may access the network (pass
through a router).

Fragmentation – The process in which an IP datagram is broken into
smaller pieces to fit the requirements of a given physical network. The re-
verse process is termed reassembly. Also see MTU.

Frame check sequence – See FCS.

Frame – The unit of information transferred across a data link.

Frame Relay – A form of packet switching that uses smaller packets and
less error checking than traditional packet switching such as X.25. Due to
these characteristics Frame Relay is effective for handling high-speed,
bursty traffic over Wide Area Networks.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

318

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Full Duplex – Bidirectional communications facility where transmissions
may travel in both directions simultaneously. Also called duplex.

Gateway – The original Internet term for what is now called router or more
precisely, IP router. In modern usage, the terms “gateway” and “application
gateway” refer to systems which do translation from some native format to
another. Examples include X.400 to/from RFC 822 electronic mail gateways.
See router.

HTTP (HyperText Transfer Protocol) – The TCP/IP protocol used on the
World-Wide Web for the exchange of HTML documents between client and
server systems. It conventionally uses TCP port 80.

HDLC (High level data link control) – An internationally agreed standard
protocol defined to control the exchange of data across either a PPP data link
or a multidrop data link.

Half Duplex – Bidirectional communications facility where transmissions
may travel in either one direction or the other at any given time. Sometimes
referred to as simplex, outside on North America.

High level data link control – See HDLC.

Host – This is normally a computer that contains (hosts) the communication
hardware necessary to connect the computer belonging to a data communi-
cation network.

Hypertext Transfer Protocol – See HTTP.

ICMP (Internet Control Message Protocol) – The protocol used to han-
dle errors and control messages at the IP layer. ICMP is actually part of the
IP protocol.

IGP (Interior Gateway Protocol) –

IP (Internet Protocol) – The network layer protocol for the Internet proto-
col suite.

IP datagram – The fundamental unit of information passed across the In-
ternet. Contains source and destination addresses along with data and a
number of fields which define such things as the length of the datagram, the
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

319

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

header checksum, and flags to say whether the datagram can be (or has
been) fragmented.

IPX (Internetwork Packet exchange) – A network layer protocol initially
developed at XEROX Corporation and made popular by Novell, Inc. It is the
basic protocol in Novell NetWare’s file server operating system and allows
Novell clients and servers to communication over LAN/WAN links.

ISDN (Integrated Services Digital Network) – A technology which com-
bines, or “integrates”, various services including telephony, telex, data
transfer, fax, teletex, and videotex in a single digital medium. ISDN makes
it possible for customers to access all of these digital data services through
a single “wire.” The standards that define ISDN are specified by ITU.

ISO (International Organization for Standardization) – An internation-
al standards organization that comprises national standards bodies; ANSI,
for example, is the U.S. representative to ISO.

ISP (Internet Service Provider) – A company which provides other com-
panies or individuals with access to, or presence on, the Internet.

ISDN address – An address of a specific ISDN device; comprises an ISDN
number plus additional digits that identify a specific terminal at a user’s in-
terface (e.g. 47117).

ISDN number – The network address associated with a user’s ISDN inter-
face (e.g. 4711).

ITU (International Telecommunication Union) – An agency of the United
Nations, the parent organization of the CCITT (now called the ITSS).

Integrated Services Digital Network – See ISDN.

Interior Gateway Protocol (IGP) – See IGP.

International Organization for Standardization – See ISO.

International Telecommunication Union – See ITU.

Intergraph and Telephone Consultative Committee – See CCIT.

Internet Control Message Protocol – See ICMP.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

320

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Internet (with a capital “I”) – The largest internet consisting of large na-
tional backbone nets (such as MILNET, NSFNET, and CREN) and a myriad
of regional and local campus networks worldwide. The Internet uses the In-
ternet protocol suite. To be on the Internet you must have IP connectivity,
i.e., be able to Telnet to--or ping--other systems. Networks with only e-mail
connectivity are not actually classified as being on the Internet.

Internet Protocol – See IP.

Internet Service Provider – See ISP.

ISDN (Integrated Services Digital Network) – A technology which com-
bines, or “integrates”, various services including telephony, telex, data
transfer, fax, teletex, and videotex in a single digital medium. ISDN makes
it possible for customers to access all of these digital data services through
a single “wire.” The standards that define ISDN are specified by ITU.

LAPB (Link Access Procedure Balanced) – The X.25 data link layer pro-
tocol.

LCP (Link Control Protocol) – A protocol used by PPP to automatically
agree upon encapsulation format options, handle varying packet size limits,
authenticate the identity of its peer on the the link, determine when a link is
functioning properly and when it is defunct, detect common misconfigura-
tion errors, and terminate the link. See RFC 1570.

LE (Local Exchange) – An ISDN central office.

LLC (Link Layer Control) – The upper portion of the data link layer, as de-
fined in IEEE 802.2. The LLC sublayer presents a uniform interface to the
user of the data link service, usually the network layer. Beneath the LLC
sublayer is the Media Access Control (MAC) sublayer.

LT (Local Termination) – That portion of the local exchange responsible for
functions related to the termination of the local loop.

Link Access Procedure Balanced – See LAPB.

Link Access Procedure on the D-channel – The ISDN data link layer
protocol specified for the D-channel.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

321

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Link Control Protocol – See LCP.

Link Layer Control – See LLC.

Local Exchange – See LE.

Local Termination – See LT.

MIB (Management Information Base) – A collection of objects that can
be accessed via a network management protocol. See SMI.

MTU (Maximum Transmission Unit) – The largest possible unit of data that
can be sent on a given physical medium. Example:
 The MTU of Ethernet is 1500 bytes. See fragmentation.

MAC (Medium access control) – Many local area networks utilize a sin-
gle transmission medium – a bus, or ring for example. to which all the con-
nected devices are attached. A procedure must be followed for each device
to ensure that transmissions occur in an orderly manner. In general, this is
known as the medium access control procedure. Two examples are CSMA/
CD and token ring.

MSN (Multiple Subscriber Number) – In Q.931 compatible D-channel
protocols, multiple telephone numbers can be used to establish a connection
with a single endpoint. Using these MSNs and an appropriate service indi-
cator a specific piece of terminal equipment or a service provided by that
equipment can be identified.

Management Information Base – See MIB.

Maximum Transmission Unit – See MTU.

Medium access control – See MAC.

Modem – (Modulator/demodulator) An electronic device (DCE) typically
used for converting serial data between computing equipment (DTE) and
and an analog transmission channel such as a phone line.

Multi-homed host – A computer in an IP network that is connected to
more than one interface can have more than one IP address (or MAC ad-
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

322

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

dress). Such a host can be called a “multi-homed” host. The interfaces may
or may not be attached to the same network.

Multicast – A special form of broadcast where copies of the packet are de-
livered to only a subset of all possible destinations. See broadcast.

Multiple Subscriber Number – See MSN.

NMS (Network Management Station) – The system responsible for man-
aging a (portion of a) network. The NMS talks to network management
agents, which reside in the managed nodes, via a network management pro-
tocol. See also: Agent, SNMP.

NAT (Network Address Translation) – (Sometimes called Virtual LAN) A
software mechanism (provided by an IP router) that allows one to extend
the Internet address already in use. IP addresses used on a LAN are "trans-
lated" to differed address when packets traverse the translating device.

NSAP (Network Service Access Point) – NSAP is an alternative address-
ing scheme used in a few X.25 data networks. The format of an NSAP ad-
dress is defined in the X.213 recommendation and includes both OSI-con-
formant and non OSI-conformant versions.

NT1 (Network Termination Type1) – The ISDN device responsible for the
termination of the ISDN transmission facility at the customer premises.

NT2 (Network Termination Type2) – An ISDN device responsible for on-
premises communication distribution, such as a PBX, LAN, or host compu-
ter.

NetBEUI – NetBIOS Extended User Interface. The network transport proto-
col used by all of Microsoft’s network systems and IBM’s LAN Server based
systems. NetBEUI is often confused with NetBIOS. NetBIOS is the applica-
tions programming interface and NetBEUI is the transport protocol.

NetBIOS – (Note: BIOS from Basic Input Output System) An applications
programming interface (API) which activates network operations on a PC
running under Microsoft’s DOS. It is a set of commands that the application
program issues in order totransmit and receive data to another host on the
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

323

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

network. The commands are interpreted by a network control program or
network operating system.

Network Address Translation – See NAT.

Network Management Station – See NMS.

Network Termination Type1 – See NT1.

Network Termination Type2 – See NT2.

OSPF (Open Shortest Path First) – One of the Internet standard Interior
Gateway Protocols (IGP) defined in RFC 1247. OSPF is a link state routing
protocol, as opposed to a distance vector routing protocol (used by RIP, the
most common IGP).

Octet – Eight data bits.

PABX (Private Automatic Branch eXchange) – An automatic PBX.

PAP (Protocol Authentication Protocol) – Under PPP, each system re-
quire it’s peeMr to authenticate itself using either PAP or CHAP.

PBX (Private Branch exchange) – A customer site telephone switch.
Common usage of this term today implies that a PBX is an automatic switch,
although a PBX could be under the control on an operator (or attendant).

PDF (Portable Document Format) – The native file format for Adobe Sys-
tems' Acrobat. PDF is the file format for representing documents in a man-
ner independent of the original application software, hardware, and operat-
ing system used to create those documents.

PH (Packet Handler) – A packet switch (or X.25 DCE equivalent device) in
an ISDN.

POTS (Plain Old Telephone Service) – The plain old telephone service is
a reference to the traditional analog telephone system.

PPP (Point-to-Point Protocol) – The successor to SLIP, PPP provides rout-
er-to-router and host-to-network connections over both synchronous and
asynchronous circuits.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

324

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

PRI (Primary Rate Interface) – (a.k.a T1 PRI Line in USA) An ISDN PRI in-
terface consists of a D-channel for signalling and 23 (USA) or 30 (Europe) B-
channels for user data. The B-channels may be switched or combined de-
pending on services from the local provider.

PSN (Packet Switched Network) – A data communications network us-
ing packet switching technology; commonly supports the X.25 interface.

PSTN (Public Switched Telephone Network) – The public switched tele-
phone network is just another term for the analog telephone system.

Packet Handler – See PH.

Packet Switched Network – See PSN.

Packet switching – A switching procedure whereby two parties have a
logical connection across a network, but no dedicated facilities, and where
units of transmission are variable in length but have a maximum size. This
is a store-and-forward technique where nodes in the network may store a
packet for some time before forwarding it to the next node in line.

Ping (Packet INternet Groper) – A program used to test reachability of
destinations by sending them an ICMP echo request and waiting for a reply.
The term is used as a verb: “Ping host X to see if it is up!”

Point-to-Point Protocol – See PPP.

Point-to-multipoint ISDN Configuration – A physical connection in which
a single network termination supports multiple terminal equipment devic-
es; only supported by the BRI.

Point-to-point ISDN Configuration – A physical connection in which a
single network termination supports one terminal equipment device; sup-
ported by the BRI or PRI.

Port – The abstraction used by Internet transport protocols to distinguish
among multiple simultaneous connections to a single destination host. See
selector.

Primary Rate Interface – See PRI.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

325

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Private Automatic Branch exchange – See PABX.

Private Branch exchange – See PBX.

Protocol Authentication Protocol – See PAP.

Protocol – A formal description of messages to be exchanged and rules to
be followed for two or more systems to exchange information.

Public Switched Telephone Network – See PSTN.

Q.930 – A CCITT recommendation describing the general aspects of the D-
channel level 3 protocol; also called recommendation I.450; the Q.930 series
recommendations form the DSS1 network layer.

RADIUS (Remote Dial In User Service) – A Client-Server based security
system often used by Internet ServiceProviders (ISPs). RADIUS defines a
mechanism by which dial-in users can be granted (or denied) access to net-
work services using a centrally managed server that exchanges authentica-
tion information (usually UDP/IP) about the user with a RADIUS client.

RARP (Reverse Address Resolution Protocol) – For hosts that can’t store
their IP address locally (diskless workstations) RARP is often used. When
such a workstation comes into service it asks for its IP address by broadcast-
ing a RARP-request that contains its own hardware address. A RARP server
usually responds by replying with the IP/MAC address pair of the work-
station. (Also see ARP).

Remote CAPI – Remote CAPI is a client-server system that allows CAPI
applications running on any PC (where Remote CAPI is is installed) to uti-
lize the ISDN interfaces of a BRICK. The remote CAPI client (Windows dll)
forwards all CAPI messages to the BRICK via a TCP data stream. The Re-
mote CAPI server (capid process on the BRICK) forwards all CAPI messag-
es to connected clients via a TCP stream.

Remote TAPI – Remote TAPI is a client-server system that allows TAPI ap-
plications running on a PC to access the telephony functionality of a BRICK.
The remote TAPI client (Windows dll) forwards all TAPI messages to the
BRICK via a TCP data stream. The Remote TAPI server (the tapid on the
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

326

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

BRICK) forwards all TAPI messages to connected clients via a TCP stream.
See also TAPI.

Repeater – A device which propagates electrical signals from one cable to
another without making routing decisions or providing packet filtering. In
OSI terminology, a repeater is a Physical Layer intermediate system. See
bridge and router.

Reverse Address Resolution Protocol – See RARP.

RFC (Request For Comments) – The document series, begun in 1969,
which describes the Internet suite of protocols and related experiments. Not
all (in fact very few) RFCs describe Internet standards, but all Internet
standards are written up as RFCs.

RIP (Routing Information Protocol) – An Interior Gateway Protocol (IGP)
supplied with Berkeley UNIX. RIP is distance vector algorithm, as opposed
to link state, routing protocol. RIP is defined in STD 34, RFC 1058 and up-
dated by RFC 1388.

Request For Comments – See RFC.

Router – A system responsible for making decisions about which of several
paths network (or Internet) traffic will follow. To do this it uses a routing
protocol to gain information about the network, and algorithms to choose
the best route based on several criteria known as “routing metrics.” In OSI
terminology, a router is a Network Layer intermediate system. In TCP ter-
minology, a router is often referred to as a gateway. See gateway, bridge and
repeater

Routing Information Protocol – See RIP.

SAP (Service Advertising Protocol) – A Novell NetWare protocol that
permits file, print, and gateway servers to advertise their services and ad-
dresses to other servers and cients.

SAPI (Service Application Identifier) – A subfield in the LAPD address
field which carries the type of level 3 service being obtained.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

327

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

SNMP (Simple Network Management Protocol) – An application proto-
col in a TCP/IP suite used to send and retrieve management related infor-
mation across a TCP/IP network. The network management protocol of
choice for TCP/IP-based internets.

STAC – An enhanced compression algorithm as defined in RFCs 1974 (PPP
Stac LZS Compression). The Stacker LZS algorithm was originally developed
by Hi/fn, Inc.

SMI (Structure of Management Information) – The rules used to define
the objects that can be accessed via a network management protocol. See
also MIB.

SPI (Service Provider interface) – In TAPI

SPID (Service Profile Identifier) – SPIDs are used in National ISDN 1
(USA) to identify an ISDN B-channel. Though normally based on your tele-
phone number the format (prefix and suffix digits) and number (one SPID
per B-channel, or one for both) of SPIDs depends on your service provider.

SPX (Sequenced Packet Exchange) – SPX is a transport layer protocol
used by Novell NetWare systems on top of IPX. See also IPX.

SS7 (Signalling System 7) – The high speed, digital common channel sig-
nalling network required for ISDN applications; also provides a myriad of
services based on the calling party’s ISDN number.

SVC (Switched Virtual Circuit) – A virtual circuit service that is estab-
lished on demand as needed and relinquished when the data exchange is
complete; requires call control procedures for the establishment and termi-
nation of the call; SVCs are supported by both X.25 and frame relay.

Service Application Identifier – See SAPI.

Service Indication – Service indication is a part of the ISDN address that
describes the type of ISDN service to be used. In DSS1, service indication
consists of the BC (bearer capability), HLC (High Layer Compatibility), and
LLC (Low Layer Compatibility), elements. In 1TR6, service indication con-
sists of the SI (service indicator), and AI (additional information) elements.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

328

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

Service Profile Identifier – See SPID.

Signalling System 7 – See SS7.

Spanning Tree Algorithm – An IEEE 802.1 standard (IEEE802.1d-1990) un-
der consideration that provides distributed routing over multiple LANs
connected by bridges.

Simple Network Management Protocol – See SNMP.

Structure of Management Information – See SMI.

Subnet – In TCP/IP terminology, a working scheme that divides a single
logical network into smaller physical networks to simplify routing.

Subnetwork – A collection of OSI end systems and intermediate systems
under the control of a single administrative domain and utilizing a single
network access protocol. Examples:
 private X.25 networks, collection of bridged LANs.

Switched Virtual Circuit – See SVC.

TA (Terminal Adapter) – A protocol converter used to allow a non-ISDN
terminal to access the network using ISDN protocols and procedures.

TAPI (Telephony Applications Programming Interface) – TAPI is a soft-
ware interface defined by Microsoft and Intel for developing Windows-
based telephony applications. TAPI applications can make, accept and mon-
itor calls. The Microsoft Dialer (part of Windows) is an example of a TAPI
application. If the Telephony Service Provider (see TSP) supports supple-
mentary services the TAPI application will also be able to redirect, hold, and
make conference calls.

TCP (Transmission Control Protocol) – The major transport protocol in the
Internet suite of protocols providing reliable, connection- oriented, full-du-
plex streams. Uses IP for delivery.

TFTP (Trivial File Transfer Protocol) – A simple file transfer protocol often
used by diskless workstations to download their boot code. Note: TFTP is
implemented on the BRICK and is used to exchange configuration files and
upgrade system software.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

329

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

TEI (Terminal Endpoint Identifier) – A subfield in the LAPD address field
that identifies a given TE device on the ISDN interface.

TSP (Telephone Service Provider) – A TSP uses the TSPI (Telephony Serv-
ice Provider Interface) defined by Microsoft to support TAPI services for a
specific piece of hardware. TAPI supports multiple TSPs allowing the end-
user to access differnt hardware at the same time.

Telephony Applications Programming Interface – See TAPI.

Telephony Service Provider Interface – See TSP.

Telnet (Telecomunications Network) – The virtual terminal protocol in
the Internet suite of protocols. Allows users of one host to log into a remote
host and interact as normal terminal users of that host.

Terminal Adapter – See TA.

Terminal Endpoint Identifier – See TEI.

Transceiver/Transmitter-receiver – The physical device that connects a
host interface to a local area network, such as Ethernet. Ethernet transceiv-
ers contain electronics that apply signals to the cable and sense collisions.

Transmission Control Protocol – See TCP.

Trivial File Transfer Protocol – See TFTP.

Twisted pair – A type of transmission medium consisting of two insulated
wires twisted together to improve the immunity to interference from other
(stray) electrical signals which might otherwise corrupt the signal being
transmitted.

UDP (User Datagram Protocol) – A transport protocol in the Internet suite
of protocols. UDP, like TCP, uses IP for delivery; however, unlike TCP, UDP
provides for exchange of datagrams without acknowledgements or guaran-
teed delivery.

UTP (Unshielded Twisted Pair) – A tranmission medium consisting of two
insulated wires twisted together to protect it from other electrical signals
that might otherwise corrupt the transmitted signal.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

330

w
w

w.
bi

nt
ec

.d
e

ISD
N

 C
o

d
e

s
Syslo

g
s

G
lo

ssa
ry

Ethe
rne

t
C

A
PI Va

lue
s

UUCP (UNIX to UNIX Copy Program) – A protocol used for communica-
tion between consenting UNIX systems.

UNIX to UNIX Copy Program – See UUCP.

User Datagram Protocol – See UDP.

V.110 – A rate adaption scheme to convert asynchronous or synchronous
transmission at rates from 50 bps to 19.2 kbps to the B-channel 64kbps rate;
limited to only one low-speed device per B-channel; widely used outside of
North America; also called recommendation I.465.

V.42 bis – A widely accepted standard that describes a compression proce-
dure used for transmitting data over telephone networks. See also STAC (an
alternative compression algorithm).

VC (Virtual Circuit) – In a store-and-forward network, a logical end-to-end
connection between two hosts; the VC must be established at service sub-
scription time or on demand by the user, but the network does not dedicate
a transmission facility to this connection.

Virtual Circuit – See VC.

X.21 – The X.21 recommendation describes the physical interface between
two DTEs in circuit-switched data networks such as Datex-P in Germany.

X.25 – An internationally agreed standard protocol defined for the interface
of a data terminal device, such as a computer, to a packet-switched data net-
work.

X.75 – A CCITT recommendation describing layers 1 through 3 of the inter-
face between PSNs, including PSPDNs and ISDNs.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

331

	Table of Contents
	Introduction
	Purpose of this document
	How to get the latest software and documentation
	How this document is organized
	Sections
	Document Navigation
	Hyper Tabs
	Other Documents

	What's included in this document
	Conventions used in this guide

	BRICK Features
	ISDN Features
	ISDN Protocol Support
	V.110 Support
	ISDN Callback Support

	IP Features
	DHCP Server
	DNS and WINS (NBNS) Negotiation over PPP
	Dynamic IP Address Assignment
	Extended IP Routing
	IP Session Accounting
	Network Address Translation
	Proxy ARP
	RIP Support
	OSPF

	Security Features
	Web based Monitoring
	RADIUS support
	IP Access Lists
	Bridge Filtering
	ISDN Call Screening

	The SNMP shell
	SNMP Explained
	Overview
	The MIB
	SNMP Managers
	MIB Structure

	SNMP Shell Overview
	The Shell Prompt
	Command Line Editing
	Object Types
	Integer Values
	Enumerated Types

	Shell Commands
	The help command (?)
	The Community Command (c)
	The Group Command (g)
	The List Command (l)
	The Priority Command (p)
	The Columns Command (u)
	The Lines Command (z)
	The Exit Command (exit)
	The Raw-Mode Command (x)
	The Table-Mode Command (y)

	External Commands
	The ping Command
	The telnet Command
	The traceroute Command
	The ipxping Command
	The minipad Command
	The isdnlogin Command
	The setup Command
	The update Command
	The halt Command
	The ifstat Command
	The netstat Command
	The ifconfig Command
	The debug Command
	The date Command
	The modem Command
	The ospfmon Command

	BRICK System Tables
	Short vs. Long Names
	Creating Table Entries
	Deleting Table Entries
	Editing Table Entries

	BRICK Interfaces
	Special Interfaces
	The REFUSE Interface (ifIndex = 0)
	The LOCAL Interface (ifIndex = 1)
	The IGNORE Interface (ifIndex 2)

	Hardware Interfaces
	Point-to-Multipoint
	Point-to-Point

	Software Interfaces

	BRICK Configuration Files
	Managing FLASH files
	Saving Configuration Files
	Loading Configuration Files
	Deleting Configuration Files
	Copying Configuration Files
	Moving Configuration Files

	Transferring Files with TFTP
	Sending TFTP Files
	Retrieving TFTP Files
	Transmitting State Information

	Transferring Files with XMODEM via Serial Port
	Getting the Configuration
	Putting the Configuration
	Transmitting State Information

	Rebooting the System

	ISDN Connections on the BRICK
	Some background on ISDN
	B and D Channels
	ISDN Interfaces
	Basic Rate Interface
	Primary Rate Interface

	Called & Calling Party’s Numbers
	Local Number

	ISDN Screening Indicator

	Attached ISDN hardware
	ISDN Auto Configuration
	Verifying Auto Configuration
	Turning Off Auto Configuration
	Restarting Auto Configuration

	ISDN Call Dispatching
	Overview
	Dispatching Algorithm
	Routing Service
	Login Service
	Pots Service
	CAPI Service

	Outgoing Calls

	ISDN Line Management
	ShortHold
	Bandwidth on Demand
	Multiple Link Support

	System Administration on the BRICK
	System Logging on the BRICK
	Accounting Messages and System Messages
	Accounting Messages
	System Messages

	Gathering Accounting Information
	ISDN Accounting Information
	Credits Based Accounting System
	Tracking Current ISDN Connections
	Logging ISDN Accounting Information to LogHosts

	IP Accounting Information
	Tracking Active IP Sessions
	Logging IP Session Information to LogHosts

	Logging with Remote LogHosts
	Remote SNMP Administration
	Object Identifiers (OIDs)
	Traps
	Standard and Enterprise-Specific Traps

	Web Based Monitoring
	SNMP-Table Browsing

	User Accounts
	Passwords
	User Rights

	Other Passwords
	HTTP Password
	RADIUS Secret

	System Software Updates
	What’s Needed
	Performing a System Software Update
	Software Update via TFTP
	Software Update via XMODEM

	BOOT Options on the BRICK
	The BOOTmonitor
	(1) Boot System
	(2) Software Update via TFTP
	(3) Software Update via XMODEM
	(4) Delete Configuration
	(5) Default BOOTmonitor Parameters
	Automatic booting over TFTP

	Booting via BootP
	BootP Relay Agent

	Other System Administration Tasks
	Setting Up a BootP Server
	Setting up a TFTP Server
	Special Note:

	Setting Up a syslog Daemon
	Logging Entries in /etc/syslog.conf

	Setting up a Time Server

	Configuring the BRICK as a Bridge
	Background on Bridging
	Bridging with the BRICK
	Bridging Features
	Learning Bridges
	The Spanning Tree Algorithm
	Bridge Filtering
	Filter Matching Procedure

	Configuring Bridging on the BRICK
	Enabling Bridging
	Bridge Initialization

	Using the BRICK as a Bridge
	Bridging between LANs
	Bridging over WAN Links
	Delay before Change of State
	Backup for a Leased Line

	Controlling Bridging Activity Using Filters
	Filtering frames sent from a particular host (by MAC address)
	Filtering all IPX packets coming from the local LAN
	Filtering broadcast packets

	Configuring the BRICK as an IP Router
	TCP/IP Primer
	Encapsulation
	IP Addressing
	Subnetting
	Protocols, Ports and Sockets

	IP Routing Protocols
	RIP
	OSPF
	Shortest Path Routing
	OSPF Routers and Link State Advertisement
	Router Types
	Link State Advertisement Types
	Router Identification
	Initialization
	Building up the LSD and the STP
	Authentication
	OSPF over Demand Circuits

	The Point-to-Point Protocol
	Establishing a PPP connection

	DialUp IP Interfaces
	Creating a DialUp IP Interface
	DialUp Options
	WAN Encapsulation
	IP Address Settings
	Compression
	Authentication
	Mulitple Link Support
	Short Hold
	ISDN Callback
	Layer 1 Protocol
	Auto-Login
	Header Compression
	Layer2Mode
	PPP Identification

	Dual IP Address Interfaces
	IP Routing on the BRICK
	Extended IP Routing
	Route Priority
	Configuring Extended Routes
	Presetting
	Configuration
	Additional Options

	BOOTP and DHCP
	BootP Relay Agent Settings
	DHCP Server Setting
	DNS and WINS (NBNS) Relay

	DNS and WINS Addresses over PPP
	Dynamic IP Address Assignment
	Server Mode
	Example Configuration of an IP Address Pools via Setup Tool
	Example Configuration of IP Address Pools via SNMP Shell
	Overlapping Address Pools
	Reserved IP Addresses

	Client Mode

	Routing with OSPF
	OSPF System Tables
	Example OSPF Installation
	Area 11.0.0.0 (stub area)
	Area 0.0.0.0 (backbone)
	Area 10.0.0.0
	Configuration Overview
	All BRICKs:
	BRICK-XL Overview (details):
	BRICK-XS Overview (details):
	BRICK-XM Overview (details):
	Configuration Steps for BRICK-XL
	Configuration Steps for BRICK-XS
	Configuration Steps for BRICK-XM
	Configuring OSPF Virtual Links
	Controlling Link State Database Overflow
	The diagram shown below attempts to illustrate the behavior of database overflow control using th...

	Import - Export of Routing Information

	Advanced IP Features
	IP Session Accounting
	Network Address Translation
	Enabling NAT
	Allowing Incoming Connections
	Mapping Addresses for Outgoing Traffic
	Session Monitoring
	Proxies

	Proxy ARP
	RIP Options
	Back Route Verify
	ipExtIfBackRtVerify

	Configuring the BRICK as an IPX Router
	Introduction to IPX
	IPX Stations: Servers and Clients
	Servers
	Clients

	IPX Networks: Network Numbers and Addresses
	Internal Network Numbers

	Configuring IPX Routing
	Adding Routes and Services
	Adding Static Routes
	Adding Static Services

	Learning Routes and Services
	Filtering IPX Packets

	Using the BRICK as a CAPI Server
	Background on CAPI
	Register Connect Release
	Message Queues

	The Remote CAPI
	Remote CAPI Library
	RVS-COM Lite for Windows 95 and Windows NT

	CAPI Settings on the BRICK
	CAPI System Tables
	CapiConfigTable
	capiMultiControllerTable
	capiUserTable

	CAPI TCP Port

	Tracing CAPI Connections
	CAPI Features and Enhancements Supported by the BRICK
	CAPI 1.1 Enhancements
	BinTec Extensions to CAPI 1.1
	CAPI 2.0 Enhancements
	BinTec Extensions to CAPI 2.0

	Telephony Services on the BRICK
	Telephony Services on The BRICK
	What is POTS?
	POTS Interfaces
	Dispatching Analog Calls
	Internal Calls
	External Calls

	What is TAPI?
	Remote TAPI on the BRICK
	TAPI Settings

	Configuring Telephony Services
	Two workspaces: two telephones, one V!CAS
	One workspace: one V!CAS, one telephone, one fax

	CAPI Information Values
	CAPI 1.1 Info Values
	Error Class 10
	Error Class 20
	Error Class 31
	Error Class 32
	Error Class 33
	Error Class 34
	Error Class 40

	CAPI 2.0 Info Values
	Error Class 00
	Error Class 10
	Error Class 11
	Error Class 20
	Error Class 30
	Error Class 33
	Error Class 34

	Ethernet Framing
	Ethernet Framing Types
	Ethernet II
	Ethernet LLC
	Ethernet SNAP
	Novell 802.3
	Token Ring

	ISDN Error Codes
	Local Causes (BRICK)
	DSS1 Causes (Euro ISDN)
	Resource unavailable class
	Service/option not available class
	Service/option not implemented class
	Invalid message class
	Protocol error class
	Internetworking class

	1TR6 Causes (National ISDN)

	Syslog Messages
	System Messages
	ISDN
	IPX
	CAPI
	PPP
	Bridge
	Config
	SNMP
	INET
	Token
	Ether
	Radius
	RIP
	Frame Relay
	Modem
	TAPI

	Glossary of Networking Terms

