bintec elmeg Manual

LAN Interfaces

bintec Dm709-I

Copyright© Version 11.0I bintec elmeg

Manual bintec elmeg

Legal Notice

Warranty

This publication is subject to change.

bintec offers no warranty whatsoever for information contained in this manual.

bintec is not liable for any direct, indirect, collateral, consequential or any other damage connected to the delivery, supply or use of this manual.

2

Table of Contents

I	Related Documents
Chapter 1	Configuring Token Ring Interfaces
1.1	Introduction
1.2	Accessing the Token Ring Configuration
1.3	Token Ring Configuration Commands
1.3.1	? (HELP)
1.3.2	LIST
1.3.3	LLC
1.3.4	MAC ADDRESS
1.3.5	NO
1.3.6	PACKET-SIZE
1.3.7	RIF-TIMER
1.3.8	SOURCE-ROUTING
1.3.9	SPEED
1.3.10	EXIT
Chapter 2	Monitoring Token Ring Interfaces
2.1	Introduction
2.2	Accessing Token Ring Monitoring
2.3	Token Ring Monitoring Commands
2.3.1	? (HELP)
2.3.2	LLC
2.3.3	RIF-DUMP
2.3.4	EXIT
2.4	Token Ring Interfaces and the Interface Monitoring Command
2.4.1	DEVICE
Chapter 3	Configuring Ethernet Interfaces
Chapter o	
3.1	Introduction
3.2	Accessing the Ethernet Configuration Menu
3.3	Ethernet Configuration Commands
3.3.1	? (HELP)
3.3.2	AUTO-NEGOTIATION
3.3.3	CDP
3.3.4	DOT1Q
3.3.5	DOT1X
3.3.6	DUPLEX
3.3.7	FLOW-CONTROL
3.3.8	INPUT-BUFFERS
3.3.9	IP-ENCAPSULATION
3.3.10	LIST

3.3.11	LLC	14
3.3.12	LLDP	14
3.3.13	MAC-ADDRESS	14
3.3.14	MEDIA-TYPE	15
3.3.15	NO	15
3.3.16	OAM	16
3.3.17	PHY-SHUTDOWN	17
3.3.18	PROMISCUOUS-MODE	17
3.3.19	REPEATER-SWITCH	17
3.3.20	SPEED	17
3.3.21	EXIT	18
Chapter 4	Monitoring Ethernet Interfaces	19
4.1	Introduction	19
4.2	Accessing the Ethernet Monitoring Menu	19
4.3	Ethernet Monitoring Commands	19
4.3.1	? (HELP)	20
4.3.2	BITRATE	20
4.3.3	COLLISION	20
4.3.4	COUNTERS	21
4.3.5	DOT1X	22
4.3.6	LASER	22
4.3.7	LLC	24
4.3.8	OAM	24
4.3.9	POWER-SOURCING-EQUIPMENT	24
4.3.10	REGISTERS	24
4.3.11	REPEATER-SWITCH	26
4.3.12	STATUS	26
4.3.13		27
4.3.14	EXIT	27
4.4	Ethornot Interfaces and the Interface Manitoring Command	20
4.4.1	Ç	28 28
4.4.1	DEVICE	20
Chapter 5	LLC Configuration	30
5.1	Introduction	30
5.2	Accessing the LLC Configuration	30
5.3	•	30
5.3.1	? (HELP)	30
5.3.2	LIST	31
5.3.3		31
5.3.4	N3-FRAMES_RCVD-BEFORE-ACK	31
5.3.5	NO	31
5.3.6	NW-ACKS-TO-INC-WW	32
5.3.7	RW-RECEIVE-WINDOW	32
5.3.8	T1-REPLY-TIMER	32
5.3.9	T2-RECEIVE-ACK-TIMER	33

5.3.10 5.3.11 5.3.12 Chapter 6 6.1 6.2 6.3 6.3.1 6.3.2 6.3.3	TI-INACTIVITY-TIMER 33 TW-TRANSMIT-WINDOW 33 EXIT 33 LLC Monitoring 34 Introduction 34 Accessing the LLC Monitoring 34 LLC Monitoring Commands 34 ? (HELP) 34 CLEAR-COUNTERS 34 LIST 35
6.3.4 6.3.5	SET. 38 EXIT 40
Chapter 7	Switch Configuration
7.1	Introduction
7.2 7.3	Traffic Storm Control 41 Spanning Tree Protocol 41
7.4	Quality of Service
7.5	Accessing the Switch Configuration
7.6	Switch Configuration Commands
7.6.1	? (HELP)
7.6.2	ACCESS-CONTROL
7.6.3	AGING-TIME
7.6.4	CPU
7.6.5	DOWN-BY-DEFAULT
7.6.6	LIST
7.6.7	NO
7.6.8	PORT
7.6.9 7.6.10	QOS
7.6.11	STP
7.6.12	EXIT
Chapter 8	Switch Monitoring
8.1	Introduction
8.2	Accessing Switch Monitoring
8.3	Switch Monitoring Commands
8.3.1	? (HELP)
8.3.2	CLEAR
8.3.3	DOT1X
8.3.4	LIST
8.3.5	NO
8.3.6	PORT-MONITOR

8.3.7	SNIFF
8.3.8	SNIFFER-PORT
8.3.9	SPANNING TREE
8.3.10	EXIT
Chapter 9	Ethernet OAM Configuration
9.1	Introduction
9.1.1	Ethernet OAM: Main operating points
9.2	Accessing the Ethernet OAM Configuration menu
9.3	Ethernet OAM Configuration Commands
9.3.1	? (HELP)
9.3.2	LINK-MONITOR
9.3.3	NO
9.3.4	OAM
9.3.5	REMOTE-FAILURE 95
9.3.6	REMOTE-LOOPBACK
9.3.7	EXIT
Chapter 10	Ethernet OAM Monitoring
10.1	Introduction
10.2	Accessing the Ethernet OAM monitoring menu
10.3	Ethernet OAM monitoring commands
10.3.1	? (HELP)
10.3.2	CLEAR
10.3.3	LIST
10.3.4	REMOTE-LOOPBACK
10.3.5	EXIT
Chapter 11	Examples
11.1	PVST+
11.1.1	Scenario

11.1.2

bintec elmeg Related Documents

I Related Documents

bintec Dm702-I TCP-IP Configuration

bintec Dm750-I Ethernet Subinterface

bintec Dm751-I VLAN

bintec Dm772-I Common Configuration Interfaces

bintec Dm776-I Power Over Ethernet

bintec Dm783-I 802.1X Authentication

bintec Dm795-I Policy Map-Class Map

bintec Dm813-I LLDP Protocol

Chapter 1 Configuring Token Ring Interfaces

1.1 Introduction

This chapter describes the Token Ring interface configuration. It includes the following sections:

- · Accessing the Token Ring Configuration.
- Token Ring Configuration Commands.

1.2 Accessing the Token Ring Configuration

To access the Token Ring configuration:

- (1) Enter **list devices** at the *Config>* prompt to display the list of interfaces and their interface number.
- (2) Enter network, followed by the Token Ring interface name.

Example:

```
*config
Config>list devices
Interface Connector Type of interface
ethernet0/0 LAN1 Fast Ethernet interface
serial0/0 SERIAL0/WAN1 X25
serial0/1 SERIAL1/WAN2 X25
serial0/2 SERIAL2/WAN3 X25
bri0/0 BRI/ISDN1 ISDN Basic Rate Int
x25-node --- Router->Node
token-ring3/0 SLOT3 Token Ring
Config>network token-ring3/0
-- Token Ring User Configuration ---
token-ring3/0 config>
```

1.3 Token Ring Configuration Commands

Certain commands are common to all device interfaces. These commands are described in bintec *Dm772-I Common Configuration Interfaces*.

The following table summarizes the Token Ring configuration commands, further explained below. Enter said commands from the Token Ring configuration menu.

Command	Function
? (HELP)	Displays available commands or their options.
LIST	Displays the selected Token Ring interface configuration.
LLC	Accesses LLC configuration.
MAC-ADDRESS	Configures the interface's physical address (MAC).
NO	Configures default values for the configuration parameters.
PACKET-SIZE	Modifies packet-size for all Token Ring networks.
RIF-TIMER	Configures the Routing Information Field (RIF) timer.
SOURCE-ROUTING	Enables or disables source-routing on the interface.
SPEED	Sets the interface speed in Mbps.
EXIT	Exits Token Ring configuration.

1.3.1 ? (HELP)

Displays the available commands and their options.

Syntax:

token-ringX/X config>?

Example:

```
list List configuration

llc Enter the LLC configuration menu
mac-address Configure the interface physical address
no Negate a command or set its defaults
packet-size Change packet size for all Token Ring networks
rif-timer Configure the RIF timer
source-routing Enable or disable end station source routing
speed Modify the data transmission speed
exit
token-ring3/0 config>
```

1.3.2 LIST

Displays the current configuration for the Token Ring interface.

Syntax:

```
token-ringX/X config>list
```

Example:

```
token-ring3/0 config>list
Packet size: 2052
Speed: 16 Mbps
RIF aging: 120
Source Routing: Enabled
MAC address: 00:00:00:00:00
token-ring3/0 config>
```

1.3.3 LLC

Accesses the LLC configuration. This configuration is mandatory to forward packets over the SNA network. See the *LLC Configuration Commands* section for a description of the available commands and their use.

Syntax:

```
token-ringX/X config>llc
```

Example:

```
token-ring3/0 config>llc
-- LLC User Configuration --
token-ring3/0 LLC config>
```

1.3.4 MAC ADDRESS

Configures the physical address of the interface (MAC). The interface can adopt locally administered addresses, or those given by the device manufacturer (universal administration). Through this command, only locally administrated addresses are deemed valid. Entering 00:00:00:00:00 (default value) forces the router to use the address given by the manufacturer for the interface. This last MAC address is used by default.

Example:

```
token-ring3/0 config>mac-address 50:84:c0:4c:84:4e
token-ring3/0 config>
```

1.3.5 NO

Sets the different parameters to their default values.

Syntax:

```
token-ringX/X config>no ?

mac-address Restore universal administration MAC

packet-size Set default packet size (2052 bytes)
```

```
rif-timer Set default RIF timer (2m)
speed Set default speed (16Mbps)
token-ringX/X config>
```

The default values are as follows:

 Command
 Default Value

 MAC-ADDRESS
 00:00:00:00:00:00:00

 PACKET-SIZE
 2052 bytes.

 RIF-TIMER
 120 seconds.

 SPEED
 16 Mbps.

1.3.6 PACKET-SIZE

Changes the packet size of all Token Ring networks. Changing the *packet-size* value can greatly increase buffer memory requirements.

The following table shows valid packet sizes for 4 Mbps and 16 Mbps networks.

 Speed
 Values (# of bytes).

 4 Mbps
 1470, 2052, 4399

16 Mbps 1470, 2052, 4399, 8130, 11407, 17749

Syntax:

token-ringX/X config>packet-size <packet size>

Example:

```
token-ring3/0 config>packet-size ?

1470
2052
4399
8130
11407
17749
token-ring3/0 config>packet-size 17749
token-ring3/0 config>
```

If you enter an incorrect value, an error message is displayed:

token-ring3/0 config>speed 4

```
token-ring3/0 config>packet-size 17749

CLI Error: Valid packet-size for 4 Mbps: 1470,2052,4399

CLI Error: Command error

token-ring3/0 config>
```

1.3.7 RIF-TIMER

Configures the Routing Information Field (RIF) timer, which measures (in seconds) the amount of time the router keeps RIF information before it is refreshed. Default is 120 seconds.

Syntax:

```
token-ringX/X config>rif-timer <value>
```

Example:

```
token-ring3/0 config>rif-timer ?
  <0s..1h> RIF aging (Time value)
token-ring3/0 config>rif-timer 40
token-ring3/0 config>
```

1.3.8 SOURCE-ROUTING

Enables or disables end station *source routing*. Through this process, end stations can determine the route to other network devices over bridges implementing source routing. This allows the IP protocol to reach nodes located on the other side of the bridge in source routing mode. This option does not depend on whether the interface supports source routing in packet transmission and reception for this type or not. Default is enabled.

Syntax:

```
token-ringX/X config>source-routing ?

disabled Disable end station source routing
enabled Enable end station source routing
token-ringX/X config>
```

Example:

```
token-ring3/0 config>source-routing disabled token-ring3/0 config>
```

1.3.9 **SPEED**

Modifies the data transmission speed. The options are 4 or 16 Mbps. Default is 16.

Syntax:

```
token-ringX/X config>speed <speed>
```

Example:

```
token-ring3/0 config>speed ?

4

16

token-ring3/0 config>speed 16

token-ring3/0 config>
```

1.3.10 EXIT

Returns to the general configuration menu (Config>).

Syntax:

token-ringX/X config>exit

Example:

```
token-ring3/0 config>exit
Config>
```

Chapter 2 Monitoring Token Ring Interfaces

2.1 Introduction

This chapter describes the monitoring of Token Ring interfaces and includes the following sections:

- · Accessing Token Ring Monitoring.
- Token Ring Monitoring Commands.
- Token Ring Interfaces and the Monitoring Interface Command.

2.2 Accessing Token Ring Monitoring

To access Token Ring Monitoring:

- (1) Enter device at the monitoring menu (+) to display the list of interfaces configured in the router.
- (2) Enter network, followed by the Token Ring interface name, at the monitoring menu (+).

Example:

*monitor					
Console Operato	or				
+device					
			Auto-test	Auto-test	Maintenance
Interface	CSR	Vect	valids	failures	failures
ethernet0/0	FA200e00	27	0	2687	0
serial0/0	FA200a00	5e	1	0	0
serial0/1	FA200a20	5d	0	36796	0
serial0/2	FA200a60	5b	0	36796	0
bri0/0	FA200a40	5с	1	0	0
x25-node	0	0	1	0	0
token-ring3/0	E0000000	24	1	0	0
+network token-	-ring3/0				
Token Ring (Console				
token-ring3/0 5	rkr+				

2.3 Token Ring Monitoring Commands

The following table summarizes the Token Ring monitoring commands, further explained in the subsequent sections. Enter these commands from the Token Ring monitoring menu.

Command	Function
? (HELP)	Shows the available commands and their options.
LLC	Accesses the LLC monitoring menu.
RIF-DUMP	Displays an RIF cache dump.
EXIT	Exits the Token Ring monitoring menu.

2.3.1 ? (HELP)

Shows the available commands and their options.

Syntax:

```
token-ringX/X TKR+?
```

Example:

```
token-ring3/0 TKR+?

LLC Access to the LLC monitoring prompt

RIF-DUMP Dumps RIF information

EXIT

token-ring3/0 TKR+
```

2.3.2 LLC

Accesses the LLC monitoring menu and allows the user to enter the LLC monitoring commands. Please see the *LLC monitoring commands* section for a description on these commands.

Syntax:

token-ringX/X TKR+LLC

Example:

token-ring3/0 TKR+LLC LLC user Monitoring token-ring3/0 LLC+

2.3.3 RIF-DUMP

When source routing is enabled on the Token Ring interface (see the section on Token Ring configuration commands), **rif-dump** displays the content of the RIF cache. The **rif-dump** command only applies to protocols, it does not apply to DLSw or bridging.

Syntax:

token-ringX/X TKR+RIF-DUMP

Example:

The meaning of each field is as follows:

MAC Address

Token Ring interface MAC address in non-canonical format.

RIF

Displays a code that indicates the RIF in hexadecimal format.

2.3.4 **EXIT**

Returns to the (+) general monitoring menu.

Syntax:

token-ringX/X TKR+EXIT

Example:

token-ring3/0 TKR+EXIT

2.4 Token Ring Interfaces and the Interface Monitoring Command

The router displays statistics for network interfaces when you enter device at the monitoring menu prompt (+).

2.4.1 DEVICE

At the monitoring menu prompt (+), enter **device** and the name of the interface. The following statistics are then displayed for the Token Ring interface chosen.

Syntax:

+DEVICE <TKR interface name>

Example:

+DEVICE TOKEN-RING3/0

Auto-test Auto-test Maintenance
Interface CSR Vect valids failures failures token-ring3/0 e0000000 24 1 0 Physical Address: 00:05:64:02:D0:25 PROM Address: 00:05:64:02:D0:25 16 Mbps Max. packet size: 4399 Handler state: Available ring
Ring status: OK Number of Signal lost 0 'beacon' packets 0 0 Lobe errors Fatal errors Ω 'auto-remove' errors 0 'Removes' packets
Ring recovery 0 Ω Ring recovery Line errors 0 'burst' errors

ARI/FCI errors 0 Input drops

Frame copy errors 0 'token' errors

Lost frames 0 Too big frames 0 0 0 0 MAC code version: EMAC 2.28 512K

The meaning of each field is:

Interface Interface name.

CSR Control/status/data Register Address.

Vect Interrupt vector associated to the interface, written in hexadecimal.

Auto-test Valids

Number of successful auto-tests.

Auto-test Failures

Number of unsuccessful auto-tests.

Maintenance Failures

Number of maintenance failures.

Physical Address Token Ring interface MAC address in NON-canonical format. This is the address

currently used by the interface. This can be a locally administrated address or a

universal address.

PROM Address MAC address provided by the manufacturer for the Ethernet interface. This is a

universal address.

Speed Transmission speed, in Mbps, of the Token Ring network connected to the inter-

face.

Max. packet size Maximum size of the data field, in bytes, configured for this interface.

Handler state Current state of the Token Ring interface. This is the state of the interface after ex-

ecuting the auto-test.

Ring status Information indicating the current status of the ring where the interface is found.

The values displayed are:

OK ok ARMV Auto removal

SIGERR Signal loss RXRMV Remove received

HERR Hard error COVF Counter overflow

SERR Soft error SGST Single station

TXBCM Transmit beacon RNGREC Ring recovery

LWFAULT Lobe wire fault

Number of Signal lost Counter for the number of frames the router has not been able to transmit due to

loss of signal in the line interface.

Fatal errors Interface transmits or receives beacon frames from the network.

'Auto-remove' errors Due to the beacon auto-removal process, the interface fails the lobe wrap test and

removes itself from the ring.

Ring recovery Interface detects token request MAC frames.

'Beacon' packets Number of beacon frames transmitted by the interface.

Lobe errors Network detects an open circuit or a short circuit in the cable linking the interface

to the MAU (Multistation Access Unit).

'Removes' packets

Number of MAC remove from the ring frames received by the interface. On receiv-

ing these, the interface removes itself from the ring.

Line errors

Increases when a frame is repeated or copied, the Error Detected Indicator (EDI) bit is 0 for the incoming frame and one of the following conditions is met:

- a) A Token has a code violation.
- b) A frame has a code violation between the start and end delimiters.
- c) A Frame Check Sequence (FCS) error occurs.

ARI/FCI errors

The ARI/FCI (Address Recognized Indicator/Frame Copied Indicator) Errors counter increases if the interface receives either of the following:

- a) An Active Monitor Present (AMP) MAC frame with the ARI/FCI bits equal to 0 and a Standby Monitor Present (SMP) MAC frame with the ARI/FCI bits equal to 0.
- b) More than one SMP MAC frame with the ARI/FCI bits equal to 0, without an intervening AMP MAC frame.

This condition indicates the upstream neighbor (from where frames are received) is unable to activate the ARI/FCI bits.

Frame copy errors

The interface, in *receive/copy* mode, recognizes a frame addressed to its specific address but finds the Address Recognize Indicator (ARI) bits is not equal to 0. This error indicates a possible line hit or duplicate address.

Lost frames

The interface is in *transmit* mode and fails to receive the end of a transmitted frame.

'Burst' errors

The interface detects the absence of transitions for *five half-bits* times between the start delimiter (SDEL) and the end delimiter (EDEL), or between the EDEL and the SDEL

Input drops

The interface, in *repeat* mode, recognizes a frame addressed to it but has no available space to copy the frame.

'Token' errors

Increases when the active monitor detects a token protocol with any of the following errors:

- a) The token MONITOR_COUNT bit with nonzero priority equals one.
- b) The frame MONITOR_COUNT bit equals one.
- c) No token or frame is received within a 10ms window.
- d) The starting delimiter/token sequence has a code violation in an area where code violations cannot exist.

Too big frames

Number of received frames with a bigger data field than the one supported by the interface.

Mac Code Version

Mac code version running in the Token Ring communications processor.

Chapter 3 Configuring Ethernet Interfaces

3.1 Introduction

This chapter describes how to configure Ethernet interfaces. It includes the following sections:

- · Accessing the Ethernet Configuration Menu.
- Ethernet Configuration Commands.

3.2 Accessing the Ethernet Configuration Menu

Follow these steps to access the Ethernet configuration menu:

- (1) Enter **list devices** at the *Config>* prompt to display a list of all the interfaces.
- (2) Enter network, followed by the name of the Ethernet interface.

Example:

3.3 Ethernet Configuration Commands

Eupotion

Certain commands are common to all device interfaces. These commands are described in bintec *Dm772-I Common Configuration Interfaces*.

This section summarizes and then explains the Ethernet configuration commands. Enter these commands from the ETH configuration menu.

Command

Note

Not all commands specified in this section are available for all Ethernet interfaces. Depending on the device, or on the interface configured, some commands may not appear.

Command	Function
? (HELP)	Shows the available commands or their options.
AUTO-NEGOTIATION	Enables auto-negotiation.
CDP	Configures the CDP protocol in the interface.
DOT1Q	Configures the VLAN tag Ethertype field.
DOT1X	Accesses authentication 802.1X configuration.
DUPLEX	Sets the mode: half-duplex or full-duplex.
FLOW-CONTROL	Configures FLOW-CONTROL mode.
INPUT-BUFFERS	Configures the number of buffers used at reception.
IP-ENCAPSULATION	Sets IP encapsulation as Ethernet type 8137 or Ethernet 802.3.
LIST	Displays the interface configuration.
LLC	Displays the LLC configuration prompt (LLC config>).
LLDP	Configures LLDP in the interface.

MAC-ADDRESSSets the MAC address used by the interface.MEDIA-TYPESpecifies the physical connection on the interface.NORemoves previously configured parameters.OAMAccesses the Ethernet OAM configuration menu.PHY-SHUTDOWNDisables the Ethernet interface at the physical layer.

PROMISCUOUS-MODE Enables promiscuous mode.

REPEATER-SWITCH Accesses the Ethernet switch configuration menu.

SPEED Configures the interface speed (10 Mbps or 100 Mbps).

EXIT Exits the Ethernet configuration menu.

3.3.1 ? (HELP)

Shows the available commands and their options.

Syntax:

ethernetX/X config>?

Example:

Command history:

Release	Modification
11.00.07, 11.01.02	The "promiscuous-mode" command was introduced.
11.01.05	The "flow-control" command was introduced as of version 11.01.05.

3.3.2 AUTO-NEGOTIATION

Configures the Ethernet interface so that it operates in auto-negotiation mode. Here, the duplex mode is set and the interface's speed is configured in accordance with the characteristics of the rest of the devices connected to the Ethernet. The device with the worst characteristics limits the rest of devices connected to the Ethernet. If, for example, several devices can operate at 100 Mbps and one can only operate at 10 Mbps, auto-negotiation configures the interface to 10 Mbps.

Syntax:

ethernetX/X config>auto-negotiation

Example:

ethernet0/0 config>auto-negotiation ethernet0/0 config>

Note

If devices connected with set speeds connect to an Ethernet interface where auto-negotiation is configured, problems may arise. The auto-negotiation mode with set speeds will be unable to detect the duplex mode of the other end. Thus, it will configure in half-duplex mode. Auto-negotiation is mandatory for Gigabit connections. If the speed is set to 1000 Mbps, the device will internally switch to auto-negotiation mode.

3.3.2.1 AUTO-NEGOTIATION ADVERTISE

Configures the characteristics advertised in auto-negotiation. To disable the advertising of characteristics, use the **auto-negotiation no advertise** option. The following characteristics can be configured:

- flow-control: advertises all flow control options available (symmetric or both symmetric and asymmetric).
- flow-control asymmetric: advertises asymmetric flow control (does not advertise symmetric flow control).
- flow-control symmetric: advertises symmetric flow control (does not advertise asymmetric flow control).

Syntax:

ethernetX/X config>auto-negotiation advertise

Example:

```
ethernet0/0 config>auto-negotiation

advertise Autonegotiation advertisement configuration

flow-control Flow control capability

asymmetric Asymmetric PAUSE toward link partner

symmetric Symmetric PAUSE

<cr>
no Disable capability advertisement

flow-control Flow control capability
```

Command history:

Release Modification

11.01.05 The "auto-negotiation advertise" command was introduced as of version 11.01.05.

3.3.3 CDP

Configures the CDP protocol in the interface.

3.3.4 DOT1Q

Configures the Ethertype field for the tags used when encapsulation is executed at the MAC level that corresponds to the IEEE 802.1Q standard in Ethernet subinterfaces. For further information on the encapsulation of Ethernet subinterfaces, please see manual bintec *Dm750-I Ethernet Subinterface*. The default value for this field is 0x8100.

Syntax:

```
ethernetX/X config>dot1q tunneling ethertype <ethertype>
ethernetX/X config>dot1q tunneling ethertype ?

0x88A8 dot1q tunneling etype 0x88A8

0x9100 dot1q tunneling etype 0x9100

0x9200 dot1q tunneling etype 0x9200
```

Example:

ethernet0/0 config>dot1q tunneling ethertype 0x88A8 ethernet0/0 config>

Note

Encapsulation increases the Ethernet frame and can cause MTU/fragmentation problems in some devices. To solve this, limit the subinterface IP MTU using the **IP MTU** command described in manual bintec *Dm702-I TCP-IP Configuration*.

3.3.5 DOT1X

Accesses the 802.1X authentication configuration. For further information on 802.1X authentication, please see manual bintec *Dm783-I 802.1X Authentication*.

Note

The **dot1x** command is not available when the Ethernet interface is internally connected to a switch.

Syntax:

ethernetX/X config>dot1x

Example:

```
ethernet0/0 config>dot1x
-- 802.1X User Config --
ethernet0/0 dot1X config>
```

3.3.6 DUPLEX

Configures the device duplex mode: half duplex or full duplex. If the device is configured with auto-negotiation, the duplex mode configuration is ignored. The interface is configured in accordance with the characteristics of the devices connected to the Ethernet.

Syntax:

ethernetX/X config>duplex <duplex mode>

Example 1:

```
ethernet0/0 config>duplex ?
  full forces full duplex operation mode
  half forces half duplex operation mode
ethernet0/0 config>
```

Example 2:

```
ethernet0/0 config>duplex full
ethernet0/0 config>
```

3.3.7 FLOW-CONTROL

Configures the flow control mode when the port is configured in fixed mode (i.e. with auto-negotiation disabled).

Syntax:

```
ethernetX/X config>flow-control
disabled Disable flow control
enabled Enable flow control
rx-only Enable asymmetric PAUSE toward local device
tx-only Enable asymmetric PAUSE toward link partner
```


Note

Flow control is not available in all switches.

Note

Asymmetric flow control is not available in all switches.

Command history:

Release Modification

11.01.05 The "flow-control" command was introduced as of version 11.01.05.

3.3.8 INPUT-BUFFERS

Configures the number of buffers used at reception. The default value depends on the type of driver. Please, do not to modify this unless our technical personnel says otherwise.

Syntax:

```
ethernetX/X config>input-buffers <number of buffers>
```

Example:

```
ethernet0/0 config>input-buffers 50
ethernet0/0 config>
```

3.3.9 IP-ENCAPSULATION

Selects the IP transport mode in the Ethernet frame data field. Possible formats are: Ethernet (Ethernet type 8137) or IEEE-802.3 (Ethernet 802.3 *raw* without 802.2). Default encapsulation is ETHERNET.

Syntax:

```
ethernetX/X config>ip-encapsulation <encapsulation type>
ethernetX/X config>ip-encapsulation ?
ethernet Ethernet type 8137
ieee-802.3 Ethernet 802.3 raw without 802.2
ethernetX/X config>
```

Example:

```
ethernet0/0 config>ip-encapsulation ieee-802.3 ethernet0/0 config>
```

3.3.10 LIST

Displays the Ethernet interface's current configuration. This includes the MAC address used by the interface, the speed, the duplex mode and the IP encapsulation. Whenever the interface is configured using auto-negotiation, the speed and the duplex mode are not displayed (as these are obtained from the characteristics of the devices connected to the Ethernet).

Syntax:

ethernetX/X config>list

Example 1:

```
ethernet0/0 config>list

MAC address: 000000000000

Speed: Auto-negotiation

IP encapsulation: ETHER

ethernet0/0 config>
```

Example 2:

```
ethernet0/0 config>list

MAC address: 0000000000000

Speed: 100Mbps

Duplex mode: Half duplex

IP encapsulation: ETHER

ethernet0/0 config>
```

3.3.11 LLC

Accesses the LLC configuration. LLC configuration is mandatory to pass frames over the SNA network. See the *LLC Configuration Commands* section for a description of the available commands and their use.

Syntax:

ethernetX/X config>llc

Example:

```
ethernet0/0 config>llc
-- LLC User Configuration --
ethernet0/0 LLC config>
```

3.3.12 LLDP

Configures the LLDP options in the interface. For further information on the *Link Layer Discovery Protocol*, please see manual bintec *Dm813-I LLDP Protocol*.

3.3.13 MAC-ADDRESS

The interface can adopt locally-administered addresses or those provided by the device manufacturer. Only locally-administrated addresses are provided through this command. Entering 00-00-00-00-00 (default value) causes the router to use the default factory station address. This last MAC address is used by default.

Syntax:

ethernetX/X config>mac-address <MAC address>

Example:

```
ethernet0/0 config>mac-address 0a-21-03-32-21-72 ethernet0/0 config>
```

3.3.14 MEDIA-TYPE

Specifies the physical connection preference on the interface. For interfaces supporting RJ45 (copper) and SFP (fiber), several options can be available depending on the operating hardware:

- auto-select: select whichever connector is attached
- prefer rj45: choose RJ-45 over SFP
- prefer sfp: choose SFP over RJ-45
- rj45: enable RJ-45 only (disable SFP)
- sfp: enable SFP only (disable RJ-45)

Syntax:

```
ethernetX/X config>media-type {auto-select | prefer rj45 | prefer sfp | rj45 | sfp}
```

Example:

```
ethernet0/1 config>media-type prefer sfp
ethernet0/1 config>
```


⇒ Note

Some devices fail to connect via an SFP interface in auto-select mode due to hardware limitations. If this is the case, please select the sfp mode instead. This limitation is present in RS123 devices.

3.3.15 NO

Sets the different parameters to their default values, disables options or deletes previously added configuration elements.

Syntax:

ethernetX/X config>no <option>

Example:

```
ethernet0/0 config>no ?

auto-negotiation Operates in auto-negotiation mode

dot1q dot1q interface configuration commands

input-buffers Number of rx buffers

phy-shutdown Shutdown interface at physical level

promiscuous-mode Enables promiscuous mode

ethernet0/0 config>
```

3.3.15.1 NO AUTO-NEGOTIATION

Disables auto-negotiation in the Ethernet interface so the interface is forced to operate at the configured speed and duplex mode.

Example:

```
ethernet0/0 config>no auto-negotiation
ethernet0/0 config>
```


Note

If devices with set speeds connect to an Ethernet interface where auto-negotiation is configured, problems may arise. The auto-negotiation mode with set speeds will be unable to detect the duplex mode of the other end. Thus, it will configure in half-duplex mode. Auto-negotiation is mandatory for Gigabit connections. If the speed is set to 1000 Mbps, the device will internally switch to auto-negotiation mode.

3.3.15.2 NO DOT1Q

Uses the Ethertype field default value in the Ethernet subinterfaces encapsulation (i.e. 0x8100).

Example:

ethernet0/0 config>no dot1q tunneling ethertype ethernet0/0 config>

3.3.15.3 NO FLOW-CONTROL

Disables flow-control.

Example:

ethernet0/0 config>no flow-control ethernet0/0 config>

Command history:

Release Modification

11.01.07 The "no flow-control" command was introduced as of version 11.01.07.

3.3.15.4 NO INPUT-BUFFERS

Uses the default value for the number of buffers used in reception. Default depends on the type of driver.

Example:

ethernet0/0 config>no input-buffers
ethernet0/0 config>

3.3.15.5 NO MEDIA-TYPE

Uses the default value for the media type. Default depends on the type of driver.

Example:

ethernet0/0 config>no media-type
ethernet0/0 config>

3.3.15.6 NO PHY-SHUTDOWN

Enables an Ethernet interface at the physical layer.

Example:

ethernet0/0 config>no phy-shutdown ethernet0/0 config>

3.3.15.7 NO PROMISCUOUS-MODE

Disables the promiscuous-mode.

Example:

ethernet0/0 config>no promiscuous-mode ethernet0/0 config>

Command history:

Release	Modification
11.00.07	This command was introduced as of version 11.00.07.
11.01.02	This command was introduced as of version 11.01.02.

3.3.16 OAM

Allows a user to access the configuration menu for the interface's Ethernet OAM feature. For further information, please see the *Configuring Ethernet OAM* chapter.

Syntax:

ethernetX/X config>oam

Example:

```
ethernet3/0 config>oam
-- Ethernet OAM interface configuration --
ethernet3/0 OAM config>
```

3.3.17 PHY-SHUTDOWN

Disables an Ethernet interface at the physical layer. This command is only available in Ethernet interfaces that aren't internally connected to a switch.

Example:

ethernet0/0 config>phy-shutdown

3.3.18 PROMISCUOUS-MODE

Enables promiscuous mode. In this mode, the Ethernet interface accepts all packets/frames transmitted on the media. However, when the promiscuous mode is disabled, the interface only accepts packets/frames addressed to it.

Syntax:

ethernetx/x config>promiscuous-mode

Default is disabled.

Example:

```
ethernet0/0 config>promiscuous-mode
ethernet0/0 config>
```

Command history:

Release	Modification
11.00.07	The "promiscuous-mode" command was introduced as of version 11.00.07.
11.01.02	The "promiscuous-mode" command was introduced as of version 11.01.02.

3.3.19 REPEATER-SWITCH

In Ethernet interfaces internally connected to a switch, this command grants access to the switch configuration menu. You can configure the operating mode of each external port that belongs to the switch in this menu. For a more in-depth explanation of the commands available, please see the *Switch Configuration Commands* section.

Syntax:

ethernetX/X config>repeater-switch

Example:

```
ethernet3/0 config>repeater-switch
-- Switch User Config --
ethernet0/0 switch config>
```

3.3.20 SPEED

Configures the interface speed: 10 Mbps, 100 Mbps or 1000Mbps (when supported by the device). If the device is configured using auto-negotiation, the speed configuration is ignored. The interface is configured in accordance with the characteristics of the devices connected to the Ethernet.

Syntax:

```
ethernetX/X config>speed <speed>
ethernetX/X config>speed ?

1000mbps forces 1000mbps

100mbps forces 100Mbps

10mbps forces 10Mbps
```

ethernetX/X config>

Example:

```
ethernet0/0 config>speed 100mbps
ethernet0/0 config>list
MAC address: 000000000000
Speed: 100 Mbps
Duplex mode: Half duplex
IP encapsulation: ETHER
ethernet0/0 config>speed 10mbps
ethernet0/0 config>list
MAC address: 000000000000
Speed: 10 Mbps
Duplex mode: Half duplex
IP encapsulation: ETHER
ethernet0/0 config>
```

3.3.21 EXIT

Exits the Ethernet configuration menu and returns to the general configuration menu (Config>).

Syntax:

ethernetX/X config>exit

Example:

ethernet0/0 config>exit Config>

18

Chapter 4 Monitoring Ethernet Interfaces

4.1 Introduction

This chapter describes the commands used to monitor Ethernet interfaces. It includes the following sections:

- · Accessing the Ethernet Monitoring Menu.
- Ethernet Monitoring Commands.
- Ethernet Interfaces and the Interface Monitoring Command.

4.2 Accessing the Ethernet Monitoring Menu

To access the Ethernet monitoring menu:

- (1) Enter device at the monitoring (+) prompt to display a list of the interfaces configured on the router.
- (2) Enter network, followed by the Ethernet interface identifier, at the monitoring (+) prompt.

Example:

*monitor					
Console Operat	tor				
+device					
			Auto-test	Auto-test	Maintenance
Interface	CSR	Vect	valids	failures	failures
ethernet0/0	FA200E00	27	1	0	0
serial0/0	FA200A00	5e	0	2596	0
serial0/1	FA200A20	5d	0	2596	0
serial0/2	FA200A60	5b	0	2596	0
bri0/0	FA200A40	5с	1	0	0
x25-node	0	0	1	0	0
ethernet3/0	F2000000	22	1	1	0
+network ether	rnet0/0				
Ethernet (Console				
ethernet0/0 ET	ГН+				

4.3 Ethernet Monitoring Commands

The following table summarizes the Ethernet monitoring commands that are available, further explained in the sections below. Enter commands from the Ethernet monitoring menu.

Note

Not all commands specified in this section are available for all Ethernet interfaces. Depending on the device, or on the monitoring interface, some commands may not appear.

Command	Function
? (HELP)	Displays available commands and their options.
BITRATE	Measures the real transmission and reception rate in Ethernet.
COLLISION	Displays collision statistics for a specified Ethernet interface.
COUNTERS	Displays different statistics for an interface.
DOT1X	Accesses the authentication 802.1X monitoring menu.
LASER	Displays information on the laser used.
LLC	Accesses the LLC monitoring menu.
OAM	Accesses the OAM protocol monitoring menu.
POWER- SOURCING-EQUIPMENT	Accesses the Power Over Ethernet monitoring menu.
REGISTERS	Displays the content of the controller registers.

REPEATER-SWITCH Accesses the switch monitoring menu.

STATUS Displays the status of the Ethernet interface.

SUBIFCS Displays information on the Ethernet subinterfaces configured over the Ethernet

interface.

EXIT Exits the Ethernet monitoring menu.

4.3.1 ? (HELP)

Shows the available commands and their options.

Syntax:

ethernetX/X ETH>?

Example:

```
ethernet0/0 ETH+?
 bitrate
                          Bit rate monitor
 collision
                         List collisions statistics
 counters
                         List device counters
                          Access to 802.1X monitoring
 laser
                         List laser parameters
 llc
                         Access to 11c monitoring
                         Ethernet OAM monitoring
 power-sourcing-equipment Access to power source engine monitoring
                         List device registers
 registers
                         Access to switch monitoring
 repeater-switch
                         List interface status
 status
                          List ethernet subinterfaces info
 subifcs
 exit
ethernet0/0 ETH+
```

Command history:

Release Modification

11.01.03 The "Subifcs" command was introduced as of version 11.01.03.

4.3.2 BITRATE

Measures the real transmission and reception rate in the Ethernet line. The rate is measured in intervals of 1 second for bits per second (bps) and for packets per second (pps). A new line is created every time the rate exceeds a maximum historic value at the point where the command was executed. Press any key to finalize rate monitoring.

Syntax:

ethernet X/X ETH+bitrate

Example:

4.3.3 COLLISION

Displays the counters for frames that suffered from collisions before being successfully transmitted. The counters tally the number of frames that were successfully sent after a specified number of collisions (ranging from 1 to 16). An increase in the number of frames transmitted with collisions and in the number of collisions per frame indicates a busy Ethernet line.

Enter clear statistics at the monitoring menu prompt (+) to clear these counters.

Syntax:

ethernetX/X ETH+collision

Example:

```
ethernet0/0 ETH+collision
Transmitted with 1 collisions: 341
Transmitted with 2 collisions: 281
Transmitted with 3 collisions: 94
Transmitted with 4 collisions: 26
Transmitted with 5 collisions: 5
Transmitted with 5 collisions:
                                              5
Transmitted with 6 collisions:
                                               4
Transmitted with 7 collisions:
                                               4
Transmitted with 8 collisions:
                                               4
Transmitted with 9 collisions:
                                               2
Transmitted with 10 collisions:
Transmitted with 11 collisions:
Transmitted with 12 collisions:
                                              0
Transmitted with 13 collisions:
                                              0
Transmitted with 14 collisions:
                                              0
Transmitted with 15 collisions:
Transmitted with 16 collisions:
                                              0
                                              0
ethernet0/0 ETH+
```

4.3.4 COUNTERS

Displays the different interface statistics. These depend on the type of Ethernet interface you access.

Syntax:

ethernetX/X ETH+counters

Example:

ethernet3/0 ETH+counters		
rx-dropped-by-kernel	=	0
rx-large-frame-errors	=	0
rx-short-frame-errors	=	0
rx-non-octet-errors	=	0
rx-crc-errors	=	0
rx-overrun-errors	=	0
rx-busy-errors	=	0
rx-babbling-errors	=	0
rx-truncated-frames	=	0
ethernet-bus-error	=	0
tx-babbling-errors	=	0
tx-underrun-errors	=	0
rx-skb-missing-errors	=	0
tx-timeout-errors	=	0
tx-rx-64-frames	=	0
tx-rx-65-127-frames	=	0
tx-rx-128-255-frames	=	0
tx-rx-256-511-frames	=	0
tx-rx-512-1023-frames	=	0
tx-rx-1024-1518-frames	=	0
tx-rx-1519-1522-good-vlan	=	0
rx-bytes	=	0
rx-packets	=	0
rx-fcs-errors	=	0
receive-multicast-packet	=	0
receive-broadcast-packet	=	0
rx-control-frame-packets	=	0
rx-pause-frame-packets	=	0
rx-unknown-op-code	=	0
rx-alignment-error	=	0
rx-frame-length-error	=	0

LAN Interfaces 2⁻

```
rx-code-error =
                                                                                                                                                                                      0
 rx-carrier-sense-error =
                                                                                                                                                                                      0
 rx-undersize-packets
                                                                                                                                                                                    0
 rx-oversize-packets
                                                                                                                                                                                0
 rx-fragmented-frames
                                                                                                                                                                               0
rx-jabber-frames =
rx-dropped-frames =
tx-byte-counter =
tx-packets
                                                                                                                                                                               0
                                                                                                                                                                              0
                                                                                                                                                                              0
                                                                                                                                                                              0
 tx-multicast-packets = tx-broadcast-packets =
                                                                                                                                                                               0
                                                                                                                                                                              0
 tx-pause-control-frames
tx-deferral-packets
                                                                                                                                                                               0
                                                                                                                                                                               0
  tx-deferral-packets
                                                                                                                                                                               0
   tx-excessive-deferral-packets =
   tx-single-collision-packets
                                                                                                                                                                                 0
                                                                                                                                                                                0
   tx-multiple-collision-packets =
   tx-late-collision-packets
                                                                                                                                                                                    0
   tx-excessive-collision-packets =
                                                                                                                                                                                    0
   tx-total-collision =
                                                                                                                                                                                      0
reserved = tx-dropped-frames = tx-jabber-frames = tx-fcs-errors = tx-control-frames = tx-oversize-frames = tx-undersize-frames = tx-fragmented-frames = tx-dropped = tx-dropped = tx-dropped = tx-fragmented-frames = tx-dropped = tx-fragmented-frames = tx
   reserved
                                                                                                                                                                                      0
                                                                                                                                                                                     0
                                                                                                                                                                                     0
                                                                                                                                                                                    0
                                                                                                                                                                                    0
                                                                                                                                                                                   0
                                                                                                                                                                                    0
                                                                                                                                                                                      0
   ethernet3/0 ETH+
```

4.3.5 DOT1X

Accesses the 802.1X authentication monitoring menu. For further information on 802.1X authentication, please see manual bintec *Dm783-I 802.1X Authentication*.

Note

The dot1x command is not available if the Ethernet interface is internally connected to a switch.

Syntax:

ethernetX/X ETH+dot1x

Example:

```
ethernet0/0 ETH+dot1x
-- 802.1X Console --
ethernet0/0 DOT1X+
```

4.3.6 LASER

In the case of Ethernet interfaces over optic fiber, this command displays information on the laser used.

¬ Note

Diagnostic information matching the SFF-8472 specification is only shown when available.

Syntax:

ethernetX/X ETH+laser

Example:

```
ethernet3/0 ETH+laser

Laser Information:

Transceiver type . SFP

Connector ...... LC Optical Connector
```

```
Gbit Compliant ... 1000BASE-SX
Vendor ..... OEM
                             OUI : 000000
Part number ..... SFP-1G1302K-I
Revision ..... 1.0
Serial number .... GS1311220307
Date code ...... 131121 (yymmddll)
Specific .....
Encoding ..... 8B10B
Wavelength ..... 1310 nm
BR Nominal..... 1.3 Gb/s
9u Distance .... 0 m
50u Distance .... 2000 m
62.5u Distance ... 2000 m
Digital Diagnostics:
Diagnostic type:
Version ..... SFF-8472 Rev 9.3
Diagnostic type .. Internally Calibrated (68)
Temperature ..... 39.44 degC
Voltage ..... 3.318 V
Current ..... 17.658 mA
TX-Power ...... 0.6278 mW (-2.02 dBm)
RX-Power ..... 0.1040 mW (-9.83 dBm)
DDM Thresholds:
             Low Alarm Low Warning High Warning High Alarm
               -88.00 -98.00
                                       +93.00
Temp.(Celsius)
                                                    +110.00
                                           3.700
                2.700
                             2.900
Voltage(Volts)
                                                       3.900

    Current (mA)
    2.000
    4.000

    TxPower (dBm)
    -9.11
    -7.02

    RxPower (dBm)
    -18.01
    -13.87

                                         70.000
                                                      80.000
                                         3.61
                                                       5.62
                                           5.23
                                                        6.93
Raw data:
Device ID:0xa0 128 bytes
0x00 .. 03 04 07 00 00 00 01 00 00 00 00 01 0d 00 00 00
0x10 .. c8 c8 00 00 4f 45 4d 20 20 20 20 20 20 20 20 20
0x20 .. 20 20 20 20 00 00 00 53 46 50 2d 31 47 31 33
0x30 .. 30 32 4b 2d 49 20 20 20 31 2e 30 20 05 1e 00 75
0x40 .. 00 1a 00 00 47 53 31 33 31 31 32 32 30 33 30 37
0x50 .. 20 20 20 20 31 33 31 31 32 31 20 20 68 f0 01 ea
Device ID:0xa2 128 bytes
0x00 .. 64 00 ce 00 5f 00 d3 00 90 88 71 48 8c 9f 75 30
0x10 .. 7e f4 13 88 75 30 17 70 31 2d 01 f5 27 10 02 77
0x20 .. 31 2d 00 14 27 10 00 19 00 00 00 00 00 00 00
0x40 .. 00 00 00 00 3f 80 00 00 00 00 00 01 00 00 00
0x60 .. 27 71 81 9c 22 7d 18 86 04 10 00 00 00 00 00
0x70 .. 00 00 00 00 00 00 00 00 4d ff ff ff ff ff
```

The information displayed is shown in accordance with MSA SFF-8472:

Laser Information

Data information provided by the manufacturer (including model, serial number, OID, device type, connector, etc.).

Digital Diagnostics

Real time diagnostics measured by the device. Values shown:

- Internally measured transceiver temperature.
- Internally measured transceiver supply voltage.
- · Measured TX bias current in mA.

• Measured TX output power in mW and dBm.

• Measured RX received optical power in mW and dBm

DDM Thresholds High alarm, low alarm, high warning and low warning threshold for each digital dia-

gnostic measure.

RAW data Data information (0xA0) and Diagnostic data (0xA2) memory content in RAW

mode.

Command history:

Release	Modification
11.01.04	Digital diagnostic information is shown if available as of version 11.01.04.
11.01.05	Information on DDM Thresholds is shown under the digital diagnostic section as of version 11.01.05.

4.3.7 LLC

Accesses the LLC monitoring menu. The LLC monitoring commands must be entered here. For a detailed description of these commands, please see the *LLC Monitoring Commands* section.

Syntax:

ethernetX/X ETH+llc

Example:

```
ethernet0/0 ETH+1lc
LLC user Monitoring
ethernet0/0 LLC+
```

4.3.8 OAM

Accesses the monitoring menu for the interface's Ethernet OAM protocol. For further information on the available commands, please see the *Monitoring the Ethernet OAM protocol* chapter.

Syntax:

ethernetX/X ETH+oam

Example:

```
ethernet0/0 ETH+oam
-- Ethernet OAM interface monitor --
ethernet0/1 OAM monitor+
```

4.3.9 POWER-SOURCING-EQUIPMENT

Accesses the Power Over Ethernet monitoring menu. For a more detailed explanation on the commands available in this menu, please see manual bintec *Dm776-I Power Over Ethernet*.

Syntax:

ethernetX/X ETH+power-sourcing-equipment

Example:

```
ethernet0/0 ETH+power-sourcing-equipment
-- Power Sourcing Equipment Monitoring Console --
ethernet0/0 PSE+
```

4.3.10 REGISTERS

Displays or modifies the content of controller registers.

Syntax:

```
ethernetX/X ETH+registers

get Get device register

list List device registers
```

set Set device register

¬ Note

If no options are available, command registers will display all controller registers.

4.3.10.1 REGISTERS GET

Displays the value of a given register.

Syntax:

```
ethernetX/X ETH+registers get
```

Example:

Read register at address 0x0.

```
ethernet2/0 ETH+registers get
Hex Register: [0]? 0
Value read: 0x08101a41
```

Command history:

Release	Modification
11.00.06	The "Registers Get" command was introduced as of version 11.00.06.
11.01.02	The "Registers Get" command was introduced as of version 11.01.02.

4.3.10.2 REGISTERS LIST

Displays all registers.

Syntax:

ethernetX/X ETH+registers list

Example:

Command history:

Release	Modification
11.00.06	The "Registers List" command was introduced as of version 11.00.06.
11.01.02	The "Registers List" command was introduced as of version 11.01.02.

4.3.10.3 REGISTERS SET

Modifies a given register.

Syntax:

ethernetX/X ETH+registers set

Example:

Set register at address 0x5b8c with value 0x20.

```
ethernet2/0 ETH+registers set

Hex Register: [0]? 0x5b8c

Hex Value: [0]? 0x20

Value read: 0x00000020

ethernet2/0 ETH+
```

Command history:

Release	Modification
11.00.06	The "Registers Set" command was introduced as of version 11.00.06.
11.01.02	The "Registers Set" command was introduced as of version 11.01.02.

4.3.11 REPEATER-SWITCH

In Ethernet interfaces internally connected to a switch, this command allows you to access the switch monitoring menu. For a more in-depth explanation of the commands available in this menu, please see *Switch Monitoring Commands* on page 64.

Syntax:

```
ethernetX/X ETH+repeater-switch
```

Example:

```
ethernet0/0 ETH+repeater-switch
-- Switch Monitoring Console --
ethernet0/0 Switch+
```

4.3.12 STATUS

Displays information on the Ethernet interface: phyter model used, link status, auto-negotiation status and the speed and duplex mode the interface operates at.

Syntax:

ethernet X/X ETH+status

Example:

```
ethernet0/1 ETH+status
Supported ..... 0x1626f
                   10baseT_Half
                   10baseT_Full
                   100baseT_Half
                   100baseT_Full
                    1000baseT_Full
                   1000baseX_Full
                   Asymmetric Pause
Advertising ..... 0x1626f
                    10baseT Half
                   10baseT_Full
                   100baseT_Half
                    100baseT_Full
                   1000baseT_Full
                    1000baseX_Full
                    Pause
```

When the link is copper (Port RJ45) and the speed is forced to 1000Mbps, an '*' appears next to Autonegotiation parameter with the following message below the list "(*) Interface speed has been configured to 1000 Mbps and Auto-Negotiation is mandatory." to indicate that the standard is obeyed.

Command history:

Release Modification

11.01.05 The status information shows supported, advertising, port and flow control data as of version 11.01.05...

4.3.13 SUBIFCS

Displays information on subinterfaces configured over the Ethernet interface.

Syntax:

ethernetX/X ETH+subifcs

Example:

```
ethernet0/0 ETH+subifcs
Subinterface ethernet0/0.20:
 Encapsulation IEEE 802.1Q:
   VLAN ID: 20
 Port-tag: Not assigned
 Excluded port: None
Subinterface ethernet0/0.30:
 Encapsulation IEEE 802.1Q in Q:
  SP VLAN ID: 30 CE VLAN ID: 300
 Port-tag: Not assigned
 Excluded port: None
Subinterface ethernet0/0.40:
 Encapsulation ARPA
 Port-tag: Not assigned
 Excluded port: None
Subinterface ethernet0/0.255:
 Encapsulation IEEE 802.1Q (RA Auto):
   VLAN ID: 10
 Port-tag: Not assigned
 Excluded port: None
ethernet0/0 ETH+
```

Command history:

Release Modification

11.01.03 The "Subifcs" command was introduced as of version 11.01.03.

4.3.14 EXIT

Returns to the general monitoring menu (+).

Syntax:

ethernet X/X ETH+exit

Example:

ethernet0/0 ETH+exit +

4.4 Ethernet Interfaces and the Interface Monitoring Command

The router displays statistics for network interfaces when you enter device at the monitoring (+) prompt.

4.4.1 DEVICE

On entering device, followed by the Ethernet interface, the router displays a series of statistics associated to it.

Syntax:

+device <ETH interface name>

Example:

+device ethernet0/0				
	Auto-test	Auto-test	Maintenance	
Interface CSR Vect	valids	failures	failures	
ethernet0/0 FA200E00 27	1	0	0	
Physical address: 00A026700000				
PROM address: 00A026700000				
Speed: 10 Mbps				
Input statistics:				
failed, frame too long	0 failed,	FCS error		1
failed, alignment error	0 failed,	FIFO overrun		1
internal MAC rcv error	1 packets	missed		1
Output statistics:				
deferred transmission	0 single	collision		0
multiple collisions	0 total c	collisions		0
failed, excess collisions	0 failed,	FIFO underrun		0
failed, carrier sense err	0 SQE tes	st error		0
late collision	0 interna	al MAC trans err	ors	0
Ethernet MAC code release 1				
+				

The meaning of each field is as follows:

Interface Interface name.

CSR Control/status and physical interface data register address.

Vect Interrupt vector associated to the interface, written in hexadecimal format.

Auto-test validsNumber of successful auto-tests.Auto-test failuresNumber of unsuccessful auto-tests.Maintenance failuresNumber of maintenance failures.

Physical address MAC address used in the Ethernet interface in canonical format.

PROM address MAC address for the Ethernet interface provided by the manufacturer.

Speed Speed (in Mbps) at which the Ethernet interface operates. It can range from 10 to

100.

Input statistics:

failed, frame too long

The interface received a frame exceeding the maximum size of 1,518 bytes for an

Ethernet frame. This data is exported via SNMP as the dot3StatsFrameTooLong

counter.

failed, FCS error The interface received a packet with a CRC error. This data is exported via SNMP

as the dot3StatsFCSErrors counter.

failed, alignment error The interface received a frame whose size in bits is not a multiple of eight.

failed, FIFO overrun

The Ethernet chipset is unable to store bytes in the local packet buffer as fast as

they come off the cable.

packets missed The interface tries to receive a packet but the local packet buffer is full. This indic-

ates that traffic in the network surpasses what the interface can handle.

internal MAC rcv error Received errors not due to excessive collisions or to carrier detection. This data is

exported via SNMP as the dot3StatsInternalMacReceiveErrors counter.

Output statistics:

deferred transmission The carrier detection mechanism detects activity on the line that causes the inter-

face to defer transmission. This data is exported via SNMP as the

dot3StatsDeferredTransmission counter.

single collision Increases when a frame collides on the first transmission attempt but is then suc-

cessfully sent on the second. This data is exported via SNMP as the

dot3StatsSingleCollisionFrames counter.

multiple collisions Increases when a frame has multiple collisions before being successfully transmit-

ted. This data is exported via SNMP as the dot3StatsMultipleCollisionFrames

counter.

total collisions Total number of collisions.

failed, excess collisions Increases when a frame transmission fails due to 16 or more successive colli-

sions. This error indicates a high volume of network traffic or hardware problems

with the network. This data is exported via SNMP as the

dot3StatsExcessiveCollisions counter.

failed, FIFO underrun Increases when packet transmission fails due to the inability of the interface to re-

trieve packets from the local packet buffer fast enough to transmit them onto the

network.

failed, carrier sense err Increases when a frame collides because the carrier detector is disabled. This er-

ror indicates a problem between the interface and its Ethernet transceiver. This

data is exported via SNMP as the dot3StatsCarrierSenseErrors counter.

SQE test error Increases when the interface sends a frame but detects that the transceiver has

no heartbeat. The packet is treated as successfully transmitted because some transceivers do not generate heartbeats. This data is exported via SNMP as the

dot3StatsSQETTestErrors counter.

late collision Increases when a frame collides after transmitting at least 512 bits. This error in-

dicates that an interface on the network failed to defer, or that the network has too many stations. This data is exported via SNMP as the dot3StatsLateCollisions

counter.

internal MAC trans errors Transmits errors that are not late, excessive, or carrier-sense collisions. This data

is exported via SNMP as the dot3StatsInternalMacTransmit Errors counter.

Ethernet MAC code release Microcode release running over the Ethernet communications processor.

5 LLC Configuration bintec elmeg

Chapter 5 LLC Configuration

5.1 Introduction

This chapter describes the LLC configuration and includes the following sections:

- · Accessing the LLC configuration.
- · LLC configuration commands.

5.2 Accessing the LLC Configuration

Access LLC configuration from a LAN interface, be it Token Ring or Ethernet, through the LLC command.

Example:

```
*config
Config>network ethernet0/0
-- Ethernet Interface User Configuration --
ethernet0/0 config>llc
-- LLC User Configuration --
ethernet0/0 LLC config>
```

5.3 LLC Configuration Commands

LLC configuration is mandatory to pass packets over an SNA network.

The following table summarizes the LLC commands. This section includes a more detailed explanation further on.

Command Function

? (HELP) Displays all LLC commands and their options.

LIST Displays LLC configuration.

N2-MAX-RETRY Modifies N2.
N3-FRAMES_RCVD-BEFORE- Modifies N3.

ACK

NO Sets the parameters to their default values.

NW-ACKS-TO-INC-WW Configures NW.

RW-RECEIVE-WINDOW Configures RW: size of the receive window.

T1-REPLY-TIMERConfigures T1.T2-RECEIVE-ACK-TIMERConfigures T2.T1-INACTIVITY-TIMERConfigures T1.

TW-TRANSMIT-WINDOW Configures TW: size of the transmit window.

EXIT Exits the LLC configuration menu and returns to the LAN interface configuration

menu.

Warning

Modifying the default values for LLC parameters may affect protocol performance.

5.3.1 ? (HELP)

Displays all available commands and their options.

Syntax:

ethernetX/X LLC config>?

Example:

ethernet0/0 LLC config>?

list List configuration

```
n2-max-retry Max retry value
n3-frames_rcvd-before-ack Rcvd I-frames before ack
no Negates a command or sets its defaults
nw-acks-to-inc-ww Acks needed to increment Ww
rw-receive-window Receive window
t1-reply-timer Reply timer
t2-receive-ack-timer Receive Ack timer (in 100 millisec.)
ti-inactivity-timer Inactivity timer
tw-transmit-window Transmit window
exit
ethernet0/0 LLC config>
```

5.3.2 LIST

Displays the current LLC configuration.

Syntax:

```
ethernetX/X LLC config>list
```

Example:

5.3.3 N2-MAX-RETRY

Maximum number of times LLC transmits an RR without receiving an acknowledgment when the inactivity timer times out. Values can range from 1 to 255. Default is 8.

Syntax:

```
ethernetX/X LLC config>n2-max-retry <valor>
```

Example:

```
ethernet0/0 LLC config>n2-max-retry 8
ethernet0/0 LLC config>
```

5.3.4 N3-FRAMES_RCVD-BEFORE-ACK

This counter works with the T2 timer to reduce acknowledgment traffic for I-frames received. Each time the router receives an I-frame, this value decreases by one. When this counter reaches 0, or when the T2 timer times out, the router sends an acknowledgement. Values range from 1 to 255. Default is 1.

Syntax:

```
ethernetX/X LLC config>n3-frames_rcvd-before-ack <valor>
```

Example:

```
ethernet0/0 LLC config>n3-frames_rcvd-before-ack 1
ethernet0/0 LLC config>
```

5.3.5 NO

Sets the different parameters to their default values.

5 LLC Configuration bintec elmeg

Syntax:

The default values are as follows:

Command	Default value
N2-MAX-RETRY	8
N3-FRAMES_RCVD-BEFORE-ACK	1
NW-ACKS-TO-INC-WW	1
RW-RECEIVE-WINDOW	2
T1-REPLY-TIMER	1 second.
T2-RECEIVE-ACK-TIMER	1 (100 ms.)
TI-INACTIVITY-TIMER	30 seconds.
TW-TRANSMIT-WINDOW	2

5.3.6 NW-ACKS-TO-INC-WW

When sending I-frames is not enabled, LLC goes into a mode where the working window (Ww) is set back to 1 before slowly reaching its normal size (Tw). This is known as the dynamic window algorithm. This value is the number of I-frames LLC must receive before incrementing Ww by 1. Values range from 1 to 127. Default is 1.

Syntax:

```
ethernetX/X LLC config>nw-acks-to-inc-ww <value>
```

Example:

```
ethernet0/0 LLC config>nw-acks-to-inc-ww 1 ethernet0/0 LLC config>
```

5.3.7 RW-RECEIVE-WINDOW

Maximum number of unacknowledged sequentially numbered I-frames that LLC can receive from a remote LLC peer. This value must be equal to, or lower than, 127. Default is 2.

Syntax:

```
ethernetX/X LLC config>rw-receive-window <value>
```

Example:

```
ethernet0/0 LLC config>rw-receive-window 2
ethernet0/0 LLC config>
```

5.3.8 T1-REPLY-TIMER

Times out when LLC fails to respond on receiving a required acknowledgment or a response from another LLC station. When this timer times out, an RR is sent with the poll bit set and T1 is re-started. If LLC receives no response after the maximum number of retries configured has timed out (N2), the lower link is declared inoperative. Values range from 1s to 4m16s. Default is 1 second.

Syntax:

```
ethernetX/X LLC config>t1-reply-timer <value>
```

Example:

ethernet0/0 LLC config>t1-reply-timer 1

ethernet0/0 LLC config>

5.3.9 T2-RECEIVE-ACK-TIMER

Delays acknowledging I-format frames. This timer starts when the router receives an I-frame and stops when the router sends an acknowledgment. If this timer times out, LLC2 sends an acknowledgment as soon as possible. T2 must be set to a value that is lower than T1 to ensure the remote LLC2 peer receives the delayed acknowledgment before the T1 timer expires. Values range from 1 to 2560. Default is 1 (100 ms), which disables the timer.

Syntax:

ethernetX/X LLC config>t2-receive-ack-timer <value>

Example:

ethernet0/0 LLC config>t2-receive-ack-timer 1 ethernet0/0 LLC config>

5.3.10 TI-INACTIVITY-TIMER

This timer times out when LLC does not receive a frame during a specified time period. When this occurs, the LLC transmits an RR until the other LLC station responds or the N2 retry count is exceeded. Values range from 1s to 4m16s. Default is 30 seconds.

Syntax:

<interface name> LLC config>ti-inactivity-timer <value>

Example:

ethernet0/0 LLC config>ti-inactivity-timer 30 ethernet0/0 LLC config>

5.3.11 TW-TRANSMIT-WINDOW

Maximum number of I-frames that can be sent before receiving an RR. Assuming the other end of the LLC session can actually receive this many consecutive I-frames, and the router has enough heap memory to keep copies of these frames until an acknowledgment is received, increasing this value may increase the performance. Values range from 1 to 127. Default is 2.

Syntax:

ethernetX/X LLC config>tw-transmit-window <value>

Example:

ethernet0/0 LLC config>tw-transmit-window 2 ethernet0/0 LLC config>

5.3.12 EXIT

Returns to the LAN interface (Ethernet, Token Ring or Ethernet subinterface) configuration menu.

Syntax:

ethernetX/X LLC config>exit

Example:

ethernet0/0 LLC config>exit
ethernet0/0 config>

6 LLC Monitoring bintec elmeg

Chapter 6 LLC Monitoring

6.1 Introduction

This chapter describes LLC monitoring and includes the following sections:

- · Accessing LLC monitoring.
- · LLC monitoring commands.

6.2 Accessing the LLC Monitoring

Access LLC monitoring from a LAN interface, be it Token Ring or Ethernet, by entering IIc.

Example:

```
*monitor
Console Operator
+network ethernet0/0
-- Ethernet Console --
ethernet0/0 ETH+11c
LLC user Monitoring
ethernet0/0 LLC+
```

6.3 LLC Monitoring Commands

The following table summarizes the LLC monitoring commands, which are further explained later on.

Command	Function
? (HELP)	Displays the LLC command and its options.
CLEAR-COUNTERS	Clears all statistics counters.
LIST	Displays the interface, SAP, and session information.
SET	Dynamically configures LLC parameters, valid for the session lifetime.
EXIT	Exits the specific LLC monitoring menu.

6.3.1 ? (HELP)

Displays the available commands and their options.

Syntax:

```
<interface name> LLC+?
```

Example:

```
ethernet0/0 LLC+?

clear-counters Clears statistical counters

list Displays LLC information

set Dynamically configures LLC parameters

exit

ethernet0/0 LLC+
```

6.3.2 CLEAR-COUNTERS

Clears all LLC information counters.

Syntax:

```
<interface name> LLC+clear-counters
```

Example:

ethernet0/0 LLC+clear-counters

ethernet0/0 LLC+

6.3.3 LIST

Displays information on the interface, the service access point (SAP) and the session.

Syntax:

```
<interface name> LLC+list ?
  interface   Displays all SAPs opened on the interface
  sap      Displays detailed information on a SAP
  session    Displays detailed information on a LLC session
<interface name> LLC+
```

6.3.3.1 LIST INTERFACE

Displays all SAPs opened on this interface.

Syntax:

```
<interface name> LLC+list interface
```

Example:

```
ethernet0/0 LLC+list interface

SAP Number of Sessions

0 0 4
4 1
8 0 0
c 0 0
f0 0 0
ethernet0/0 LLC+
```

6.3.3.2 LIST SAP

Displays information on the interface's specified SAP.

Syntax:

```
<interface name> LLC+list sap <SAP number>
```

Example:

```
ethernet0/0 LLC+list sap 4
Reply Timer(T1):
                        6,TKR/0
                         1 sec
Receive ACK Timer(T2):
                        1 100milisec (note: not used when N3=1)
                        30 sec
Inactivity Timer(Ti):
MAX Retry Value(N2):
MAX I-Field Size(N1):
Rcvd I-frames before Ack(N3): 1
Transmit Window Size(Tw):
Acks Needed to Inc Ww(Nw):
Frame Type Xmt
                      Rcvd
              0
UI-frames:
                         0
                0
TEST-frames:
                         24
XID-frames:
                        58
U 58
I-frames: 16 17
RR-frames: 687 677
RNR-frames: 2 0
                0
REJ-frames:
                        0
                0
                         2
SABME-frames:
                         1
UA-frames:
                2
DISC-frames:
                1
                        0
DM-frames:
                0
FRMR-frames: 0
I-frames Discarded by LLC: 0
I-frames Refused by LLC user: 0
```

6 LLC Monitoring bintec elmeg

Cumulative number of sessions: 13
Number of active sessions: 1

Session ID Remote

(int-sap-id) Local MAC Remote MAC SAP State 00-04-000c 00:05:24:a7:a3:99 00:05:24:3e:d7:28 04 LINK_OPENED

ethernet0/0 LLC+

The meaning of each field is:

SAP value in hex(0-FE) SAP value for the session (hexadecimal value).

Interface Number and type of interface the session is running over.

Reply Timer(T1) Time it takes for this timer to time out when LLC fails to receive an acknowledg-

ment or response from the other LLC station.

Receive ACK Timer(T2) Time delay LLC uses before sending an ACK for a received I-frame.

Inactivity Timer(Ti) Time the LLC waits during inactivity before issuing an RR.

MAX Retry Value(N2) Maximum number of retries by the LLC protocol.

MAX I-Field Size(N1) Data (in bytes) allowed in the I-field for an LLC2 frame.

Rcvd I-frames before Ack(N3) Value used with T2 timer to reduce acknowledgment traffic for received I-frames.

Transmit Window Size(Tw) I-frames that can be sent before receiving an RR.

Acks Needed to Inc Ww(Nw) I-frames the LLC must receive before incrementing Ww by 1.

Frame Type (Xmt, Rcvd) Frame types transmitted (Xmt) and received (Rcvd).

I-frames Discarded by LLC I-frames discarded by the LLC, usually because the sequence number is out of se-

quence.

work Manager) and DLSw (Data Link Switching).

Cumulative number of sessions Sessions opened over this session SAP.

Number of active sessions
Currently active sessions running over the interface.

Session ID (int-sap-id)

Session ID for the interface.

Local MAC

Router's LLC MAC address.

Remote MAC Remote router's LLC MAC address.

Remote SAP Remote router's SAP address for the LLC connection.

Remote State

Defined state(s) that result from the interaction of LLC peers. There are 21 states, described below:

LINK_CLOSED The remote LLC peer is not known to the local LLC peer and is considered non-

existent.

DISCONNECTED The local LLC peer is known to the other peer. This LLC peer can send and re-

ceive xid, test sabme and disc commands and XID TEST, UA, and DM re-

sponses.

LINK_OPENING State of the local LLC peer after sending an SABME or UA in response to a re-

ceived SABME.

DISCONNECTING State of the local LLC after sending a **disc** command to the remote LLC peer.

Local LLC peer has entered the frame reject exception state and has sent an

FRMR_SENT FRMR response across the link.

LINK_OPENED Local LLC peer is in a data transfer phase.

LOCAL_BUSY Local LLC peer is unable to receive additional I-frames.

REJECTION Local LLC peer has received one or more out-of-sequence I-frames.

CHECKPOINTING The local LLC peer has sent a poll to the remote LLC peer and is waiting for an

appropriate response.

CKPT_LB Combination of checkpointing and local busy states.

CKPT_REJ Combination of checkpointing and rejection states.

RESETTING Local LLC peer has received an SABME and is reestablishing the link.

REMOTE_BUSY Resulting state when an RNR is received from the remote LLC peer.

Combination of Local_Busy and Remote_Busy states.

LB_RB

REJ_LB Combination of rejection and Local_Busy states.

REJ_RB Combination of rejection and Remote_Busy states.

CKPT_REJ_LB Combination of checkpointing, rejection, and Local_Busy states.

Combination state resulting from the termination of a Local-Busy condition while CKPT_CLR

the LLC peer is CKPT_LB.

CKPT_REJ_CLR Combination state resulting from the transfer of an unconfirmed Local_Busy clear

while the link station is in the CKPT_REJ_LB state.

REJ_LB_RB Combination of the rejection, Local_Busy, and Remote_Busy states.

FRMR_RECEIVED Local LLC peer has received an FRMR response from the remote LLC peer.

6.3.3.3 LIST SESSION

Displays information on a specific LLC session that is open on the interface.

Syntax:

```
<interface name> LC+list session <session identifier>
```

```
ethernet0/0 LC+list session 07-04-000c
Session ID: 07-04-000c
Interface: 07,BDG/0
                            07,BDG/0
00:05:24:3e:d7:28
00:05:24:a7:a3:99
Remote MAC addr.
Source MAC addr:
                                  04
Local SAP:
                                  04
                                  None
Access Priority: 0
State: LINK_OPENED
Reply Timer(T1): 1 sec
Receive ACK Timer(T2): 1 100milisec (note: not used when N3=1)
Inactivity Timer(Ti): 30 sec
                                  0
MAX I-Field Size(N1):
MAX Retry Value(N2):
Rcvd I-frames before Ack(N3): 1
Transmit Window Size(Tw):
Working Transmit Size(Ww):
Acks Needed to Inc Ww(Nw):
Current Send Seq (Vs):
Current Rcv Seq (Vr):
Last ACK'd sent frame (Va):
No. of frames in ACK pend q: 0
No. of frames in Tx pend q: 0
Local Busy:
Remote Busy:
Remote Busy:
Poll Retry count:
                                  8
Appl output flow stopped: NO Send process running: YES
                                  YES
Frame Type Xmt Rcvd
I-frames: 7 7
RR-frames: 19 15
RNR-frames: 1
REJ-frames: 0
                                 0
I-frames Discarded by LLC: 0
I-frames Refused by LLC user: 0
ethernet0/0 LLC+
```

The meaning of each field is as follows:

Session ID Session ID number.

Interface Interface over which the session is running.

Remote MAC addr Remote LLC peer MAC address.

Source MAC addr Local LLC MAC address.

Remote router's SAP address for the LLC. Remote SAP Router's local SAP for LLC connection. Local SAP

RIF Frame RIF.

Packet priority. 0-7 for upper layer control. Access Priority

Defined state(s) resulting from the interaction between the LLC peers. For further State

6 LLC Monitoring bintec elmeg

information, see the **list sap** command (previously described in this chapter).

Reply Timer(T1) Time-out duration period of the timer when the LLC is unable to receive an ac-

knowledgement or response from the other LLC station.

Receive ACK Timer(T2) Time delay LLC uses before sending an acknowledgment for a received I-frame.

Inactivity Timer(Ti) Time delay the LLC waits during inactivity before issuing an RR.

MAX I-Field Size(N1) Maximum size of a frame data field (in bytes). Default is the interface size.

MAX Retry Value(N2) Number of times LLC transmits an RR without receiving an acknowledgment.

Rcvd I-frames before Ack (N3) Value used by the T2 timer to reduce acknowledgement traffic for received I-

frames.

Transmit Window Size (Tw) Number of I-frames that can be sent before receiving an RR.

Working Transmit Size (Ww) Number of I-frames sent before receiving an RR. This can be lower than Tw dur-

ing the dynamic window algorithm.

Acks Needed to Inc Ww (Nw)

Number of I-frames the LLC must receive before incrementing Ww by 1.

Current Send Seq (Vs)

Send state variable (Ns value for the next I-frame to be transferred).

Current Rcv Seq (Vr)

Receive state variable (next in-sequence Ns to be accepted).

Last ACK'd sent frame(Va)

No. of frames in ACK pend q

No. of frames in Tx pend q

Number of frames awaiting transmission.

Acknowledged state variable (last valid Nr received).

Transmitted I-frames awaiting acknowledgment.

Number of frames awaiting transmission.

Local Busy

LUC router's local connection is sending RNRs.

Remote Busy Remote LLC is receiving RNRs.

Poll Retry count Normal value of the counter retry in the LLC protocol.

Appl output flow stopped LLC has ordered the application to stop sending outgoing data frames.

Send process running This process runs at the same time as other frame actions and takes I-frames in

the transmit queue and forwards them.

Frame Type (Xmt, Rcvd)

I-frames Discarded by LLC

I-frames Refused by LLC user

Displays the total number of frame types transmitted (Xmt) and received (Rcvd).

I-frames transmitted (Xmt) and received (Rcvd).

I-frames discarded by the LLC, usually because the sequence number is wrong.

I-frames discarded by the LLC software. For example, LNM (LAN Network Man-

ager) and DLSw (Data Link Switching).

6.3.4 SET

Dynamically configures LLC parameters on an open LLC session. Modifications made to the parameters are effective for the session's lifetime. These parameters are the same as those described in chapter *LLC Configuration* on page 30.

Warning

Modifying the default values of LLC parameters may affect protocol performance.

Syntax:

6.3.4.1 SET N2-MAX-RETRY

Maximum number of times the LLC protocol transmits an RR without receiving an acknowledgment when the inactivity timer times out. Values range from 1 to 225. Default is 8.

Syntax:

```
<interface name> LLC+set n2-max-retry <session ID> {<value>|default}
```

Example:

```
ethernet0/0 LLC+set n2-max-retry 07-04-000c 8 ethernet0/0 LLC+
```

6.3.4.2 SET N3-FRAMES_RCVD-BEFORE-ACK

Value used with the T2 timer to reduce acknowledgment traffic for I-frames received. Each time an I-frame is received, this value diminishes and a counter, which started out with the value configured for this command, decreases. When this counter reaches 0, or the T2 timer times out, an acknowledgment is sent. Values range from 1 to 255. Default is 1.

Syntax:

```
<interface name> LLC+set n3-frames_rcvd-before-ack <session ID> {<value>|default}
```

Example:

```
ethernet0/0 LLC+set n3-frames_rcvd-before-ack 07-04-011f 1 ethernet0/0 LLC+
```

6.3.4.3 SET NW-ACKS-TO-INC-WW

When sending I-frames is not possible, the LLC protocol enters into a mode where the working window (Ww) is set back to 1 and is then slowly increased back to its normal size (Tw). This is known as the dynamic window algorithm. This value is the number of I-frames the LLC must receive before incrementing Ww by 1. Values range from 1 to 127. Default is 1.

Syntax:

```
<interface name> LLC+set nw-acks-to-inc-ww <session ID> {<value>|default}
```

Example:

```
ethernet0/0 LLC+set nw-acks-to-inc-ww 07-04-00ac 2 ethernet0/0 LLC+
```

6.3.4.4 SET T1-REPLY-TIMER

Times out when the LLC fails to receive a required acknowledgment or response from the other LLC station. When this timer times out, an RR is sent with the poll bit set and T1 is restarted. If the LLC receives no response after the configured maximum number of retries has been reached (N2), the lower link is declared inoperative. Values range from 1 to 256. Default is 1 second. The **disable** option deactivates the timer.

Syntax:

```
<interface name> LLC+set t1-reply-timer <session ID> {<value>|default|disable}
```

Example:

```
ethernet0/0 LLC+set t1-reply-timer 07-04-000c 1 ethernet0/0 LLC+
```

6.3.4.5 SET T2-RECEIVE-ACK-TIMER

Timer used to delay the sending of an acknowledgment when an I-frame is received. The timer starts when an I-frame is received, and resets when an acknowledgment is sent. If it times out, LLC2 sends an acknowledgment as soon as possible. This value must be set to a lower value than T1, ensuring the remote LLC2 peer receives the delayed acknowledgment before the T1 timer expires. Values range from 1 to 2560. Default is 1 (100 ms), which deactivates the timer. The **disable** option also deactivates the timer.

Syntax:

```
<interface name> LLC+set t2-receive-ack-timer <session ID> {<value>|default|disable}
```

Example:

```
ethernet0/0 LLC+set t2-receive-ack-timer 07-04-000c disable ethernet0/0 LLC+
```


Note

If this timer is set to 1 (default), it will not run (e.g., N3-FRAMES_RCVD-BEFORE-ACK=1).

6 LLC Monitoring bintec elmeg

6.3.4.6 SET TI-INACTIVITY-TIMER

Expires when LLC does not receive a frame for a specified time period. When it times out, LLC transmits an RR until the other LLC station responds or the N2 timer expires. Default is 30 seconds, but options range from 1 to 256. The **disable** option deactivates the timer.

Syntax:

<interface name> LLC+set ti-inactivity-timer <session ID> {<value>|default|disable}

Example:

```
ethernet0/0 LLC+set ti-inactivity-timer 07-04-000c default
Inactivity Timer(Ti) in sec.[30]?
ethernet0/0 LLC+
```

6.3.4.7 SET TW-TRANSMIT-WINDOW

Sets the maximum number of I-frames that can be sent before receiving an RR. Assuming that the other end of the LLC session can actually receive this many consecutive I-frames, and the router has enough memory to keep copies of these frames until an acknowledgment is received, increasing this value may increase the throughput. Values range from 1 to 127. Default is 2. The **disable** option deactivates the timer.

Syntax:

<interface name> LLC+set tw-transmit-window <session ID> {<value>|default|disable}

Example:

```
ethernet0/0 LLC+set tw-transmit-window 07-04-000c 10 ethernet0/0 LLC+
```

6.3.5 **EXIT**

Returns to the LAN monitoring menu (Ethernet or Token Ring).

Syntax:

<interface name> LLC+exit

Example:

ethernet0/0 LLC+exit ethernet0/0 ETH+

Chapter 7 Switch Configuration

7.1 Introduction

Some of our routers have an internally-connected switch to an Ethernet interface.

A switch enables traffic separation through the creation of independent segments. To do this, the switch has several ports (each one corresponding to a segment). The switch learns the MAC addresses in each segment and only allows traffic to pass from one segment to another when the destination address is proven to belong to another segment or is a group address (multicast or broadcast).

7.2 Traffic Storm Control

A switch transmits the broadcast and multicast traffic received through a port to the remaining ports. Similarly, if a destination MAC address for a unicast packet isn't known to the switch, the packet is sent through all ports. If high volumes of this type of traffic are generated (traffic storms) in a segment, they are sent to all segments. Traffic storms usually stem from network configuration errors and can saturate the network.

Using the traffic storm control frame throughput at the switch port can be limited.

Traffic control is configured by entering **storm-control**. Traffic control is a characteristic of the switch being used (i.e. it's a hardware characteristic, not software-related), meaning its configuration varies depending on the switch being used in the device.

The configurable parameters are as follows:

- Bandwidth, which triggers the traffic control mechanism. If the number of frames of a certain type received by a port surpasses the bandwidth configured for said port, the switch stops sending these frames to the other ports.
- The type of frames to take into account when the traffic control mechanism begins to operate: all frames, broadcast frames, multicast frames or flooded-unicast (unicast frames sent by all the switch ports when the destination address cannot be found in the switch's MAC addressing table).
- · Traffic control mechanism, enabled or disabled in the switch port.

Depending on the type of switch, the first two parameters can be configured globally or per port. The types of frames that can be taken into account for traffic control also vary according to the type of switch used.

If you enable traffic control in a port, the switch calculates, in time intervals, the number of frames received for the configured types. If the number of frames surpasses the configured bandwidth, the frame reception process is stopped in said port until the next time interval for calculation begins. The frame counter restarts when a new calculation period begins.

When configuring traffic control, please remember hardware limitations may be set in the bandwidth values of the switch (i.e., little resolution in the internal registers used). This means that, in some switches, the real value of the bandwidth used is different from the value configured. You can view the real value in the switch by entering **list storm-control** (a monitoring command).

7.3 Spanning Tree Protocol

Switch ports can be configured to execute the Spanning Tree protocol. Ports can be divided in different Spanning Tree instances.

Note

Throughout this manual, the ports grouped in a Spanning Tree instance are sometimes referred to as bridge.

When enabling Spanning Tree in a switch port, take the following considerations into account:

- The switch stops forwarding BPDU frames, regardless of whether the frame is received through a port where Spanning Tree is running or not.
- You cannot configure *bridge* in a switch where a port is running Spanning Tree.
- You cannot configure a port as a WAN port if a Spanning Tree is running. For further information on WAN ports, please see manual bintec Dm750-I Ethernet Subinterface.

 In the case of Kendin switches, there are restrictions when configuring the VLANs. Please see manual bintec Dm751-I VLAN

Use the following commands to configure Spanning Tree in a switch:

- port <port-id> stp enable instance <id> to enable Spanning Tree in a port and to associate it to a certain Spanning Tree instance.
- port <port-id> stp <parameters> to configure the different Spanning Tree protocol parameters associated to a given port.
- stp <instance> <parameters> to configure the different Spanning Tree protocol parameters associated to a certain instance.

Per Vlan Spanning Tree (PVST) can also be used for the selected ports.

This means that each VLAN on a network can build its own Spanning Tree. All switch ports used in this instance must be a member of the requested VLAN.

- stp <instance> vlan <vlan-id> to enable Spanning Tree using PVST.
- Feature vlan vlan <vlan-id> ethernet0/0 port x to enable vlan on switch port x.

7.4 Quality of Service

This feature is available in some switches and allows:

- (1) To configure a limit on the output rate in a given switch port.
- (2) To assign the default COS values to traffic from a port and execute re-tagging for some, or all, COS values.
- (3) To configure different priorities, depending on the COS or DSCP values, and assign them to different output queues (up to a total of four) in each port.
- (4) To alter the output queue discipline, either globally or per port.
- (5) To configure which input packet parameter in a port (COS or DSCP) is used for priority.

Fig. 1: Switch queue structure

The switch queue structure is based on a queue manager, four output queues per port, a scheduler and an output rate manager.

The queue manager receives the packets from each port and, depending on the configured criteria (COS in 802.1Q, DSCP, COS by default) and the output port, selects where to queue the packet. The scheduler organizes the four queues for each port and decides what queue is served at what time, depending on the programmable service discipline (Strict Priority or Weight Round Robin).

The output rate manager limits the volume of data transmitted to the configured value.

7.5 Accessing the Switch Configuration

To access the switch configuration, enter repeat-switch in the configuration menu of the Ethernet interface.

Example 1:

Config>list devices		
Interface	Connector	Type of interface
ethernet0/0	LAN1	Fast Ethernet interface
serial0/0	SERIALO/WAN1	X25
serial0/1	SERIAL1/WAN2	X25
serial0/2	SERIAL2/WAN3	X25
bri0/0	BRI/ISDN1	ISDN Basic Rate Int
x25-node		Router->Node
ethernet3/0	SLOT3	KS8995M Switch PCI
Config>network ether	net3/0	

```
-- Ethernet Interface User Configuration -- ethernet3/0 config>repeater-switch
-- Switch User Config -- ethernet0/0 switch config>
```

Example 2:

```
Interface Connector Type of interface

ethernet0/0 LAN1 Marvell Fast Ethernet Switch

atm0/0 DSL1 Generic ATM

bri0/0 BRI/ISDN1 ISDN Basic Rate Int

x25-node --- Router->Node

Config>network ethernet0/0

-- Ethernet Interface User Configuration --
ethernet0/0 config>repeater-switch

-- Switch User Config --
ethernet0/0 switch config>
```

7.6 Switch Configuration Commands

The following table summarizes all switch configuration commands. These commands are further explained in the following paragraphs.

Command	Function
? (HELP)	Displays all switch configuration commands or their options.
ACCESS-CONTROL	Configures access control parameters.
AGING-TIME	Configures aging time for the switch MAC addresses.
CPU	CPU port configuration
DOWN-BY-DEFAULT	Interface status is down if there is nothing connected to it.
LIST	Displays switch configuration.
NO	Configures parameters with their default values.
PORT	Configures specific parameters for a switch port.
QOS	Configures quality of service parameters.
STORM-CONTROL	Configures traffic storm control global parameters.
STP	Configures global parameters for the Spanning Tree protocol function in the switch.
EXIT	Exits the switch configuration menu.

7.6.1 ? (HELP)

Displays the available commands and their options.

Syntax:

```
ethernetX/X switch config>?
```

Example:

```
ethernet3/0 switch config>?

access-control Access Control Configuration

aging-time Configures Aging time for MAC address table entries

cpu CPU port configuration

down-by-default Interface status is down if there is nothing connected to it

list List Configuration

no Negate a command or set its defaults

port Port Configuration

qos Configures quality of service

storm-control Configures storm control

stp Configures spanning tree protocol
```

```
exit
ethernet3/0 switch config>
```

Command history:

Release	Modification
11.01.04	The "down-by-default" command was introduced as of version 11.01.04.
11.01.05	The "CPU" command was introduced as of version 11.01.05.

7.6.2 ACCESS-CONTROL

Accesses the submenu to configure the blocked entries list, applied to all switch ports for access control. The entries list is configured as a *class-map*.

Syntax:

```
ethernetX/X switch config>access-control
--Access Control User Config --
Access Control Config>?
block Configures a block list to access control
no Negate a command or set its defaults
refresh-mac-interval Configures MAC addresses refresh interval
exit
```


Note

You can only configure blocked entry lists. If you try to configure a permitted entry list, an error message appears.

7.6.2.1 block class-map <class-name>

Configures the name of the *class-map* that contains the list of blocked entries. To configure the *class-map*, please see manual *bintec Dm795-I_Policy_Map-Class_Map*:

Note

The class-map must exist before it can be assigned as an access control list. Otherwise, an error message appears.

7.6.2.2 refresh-mac-interval

Configures the refresh time for MAC entries learned by the switch. In some devices, the MAC control allowed forces the *software* to maintain a list of MACs learned by the switch. To do this, you need to periodically check the table that internally manages the switch and update it.

This parameter is only valid if it is applied to the access control of a switch port.

Syntax:

```
Access Control Config> refresh-mac-interval ?
<1...65535> Value in the specified range
```

Example:

Configuring 600 seconds as a refresh interval.

Access Control Config> refresh-mac-interval 600

7.6.3 AGING-TIME

Configures the aging time for MAC addresses learned by the switch.

Syntax:

ethernetX/X switch config>aging-time <value>

<value> Value between 1 and 3600 seconds.

¬ Note

The range of values available may be different for some switch models.

Example:

ethernet1/0 switch config>aging-time 60

NO configures the aging default value (300 seconds).

Command history:

Release Modification

11.01.11 The aging-time range depends on the switch model.

7.6.4 CPU

Configures CPU port options.

Syntax:

```
ethernetX/X switch config>cpu

flow-control Configures flow control mode

disabled Disables flow control mode

enabled Enables flow control mode

rx-only Enable asymmetric PAUSE toward local device

tx-only Enable asymmetric PAUSE toward link partner
```


Note

This command is not available on all platforms.

Command history:

Release Modification

11.01.05 The "cpu" command was introduced as of version 11.01.05.

7.6.5 DOWN-BY-DEFAULT

When configuring the down-by-default command, the interface status will be down if there is nothing connected to it. Otherwise, the interface base will always be up.

It is important to keep in mind that raising an interface could take a while.

Example:

ethernet0/0 switch config>down-by-default

Command history:

Release Modification

11.01.04 The "down-by-default" command was introduced as of version 11.01.04.

7.6.6 LIST

Displays the switch configuration.

Syntax:

```
ethernetX/X switch config>list ?

configuration Lists ports configuration

stp Lists the Spanning Tree Protocol configuration
```

7.6.6.1 LIST CONFIGURATION

Displays the configuration of the various switch ports.

Syntax:

ethernetX/X switch config>list configuration

Example:

ethernet3/0 switch config>list configuration												
						Auto-	negotia	ation	Adve	rtise	Storm Cont	col
Port	Ena	Aneg	Speed	Duplex	FC	100FD	100HD	10FD	10HD	FlowC	Packets	Lvl
1	Y	Y	100	Half	N	Y	Y	Y	Y	Y	Bcst	15
2	Y	Y	100	Half	N	Y	Y	Y	Y	Y	Disabled	15
3	Y	Y	100	Half	N	Y	Y	Y	Y	Y	Disabled	15
4	Y	Y	100	Half	N	Y	Y	Y	Y	Y	Disabled	15
ether	net3/	0 swit	ch conf	ig>								

The meaning of the columns is as follows:

Port: Switch port identifier.

Ena (Enable): Indicates whether the port is enabled or not. If the port is disabled, data is not transmitted or received through it.

Aneg (Auto-negotiation): Indicates if auto-negotiation is enabled or not. Whenever it is enabled, the rate and duplex mode for the port are set (based on the characteristics of the devices connected to the network segment where the port is connected).

Speed: Speed in Mbps configured for the port. This is only valid when auto-negotiation is disabled.

Duplex: Duplex mode configured for the port. This is only valid when auto-negotiation is disabled.

FC: Flow control (Pause) configured for the port. This value is only used if auto-negotiation is disabled.

Auto-negotiation Advertise: Indicates the characteristics the port advertises to other devices connected to the same segment during auto-negotiation. The configurable characteristics are as follows:

- 100FD: the device is capable of operating at 100Mbps, Full-Duplex.
- 100HD: the device is capable of operating at 100Mbps, Half-Duplex.
- 10FD: the device is capable of operating at 10Mbps, Full-Duplex.
- 10HD: the device is capable of operating at 10Mbps, Half-Duplex.
- FlowC: the device understands flow control commands.

Storm control: traffic storm control configuration per port. The configurable characteristics are as follows:

- · Packets: type of packets calculated when determining if the traffic control should be activated in a port.
- · Lvl (Level): percentage of bandwidth that must be surpassed for traffic control to activate.

7.6.6.2 LIST STP

Displays the global configuration for a Spanning Tree protocol instance.

Syntax:

```
ethernetX/X switch config>list stp <instance>
```

<instance> Spanning Tree instance identifier. You can configure up to 16 Spanning Tree instances in a switch.

Example:

```
ethernet1/0 switch config>list stp 1
STP instance 1
Address: 00-a0-26-21-22-41
Priority: 32768
Protocol: normal operation
ForwardDelay: 15
MaxAge: 20
TxHoldCount: 6
Vlan-Id: 100
Tagged:
            yes
Vlan-Id:
Ports:
      Port: 1
             PathCost:
            Priority:
Admin:
                         128
             Auto:
             PointToPoint: Auto
             BPDU Filter: Default
             BPDU Filter: Default
      Port: 2
             PathCost: 0
             Priority:
             Admin:
             PointToPoint: Auto
             BPDU Filter: Default
             BPDU Filter: Default
      Port: 4
            PathCost: 0
Priority: 128
            Admin:
                         No
             Auto:
                         Mo
             PointToPoint: Auto
             BPDU Filter: Default
             BPDU Filter: Default
ethernet1/0 switch config>
```

7.6.7 NO

Configures parameters with their default values or deletes the configuration.

Syntax:

```
ethernetX/X switch config>no ?

aging-time Configures Aging time for MAC address table entries

cpu CPU port configuration

down-by-default Interface status is down if there is nothing connected to it

qos Configures quality of service

storm-control Configures storm control

stp Configures spanning tree protocol
```

7.6.8 **PORT**

Configures a switch port.

Syntax:

```
ethernetX/X switch config>port <port identifier>
access-control Configures port access control
autonegotiation Autonegotiation Configuration
dot1X Accesses the 802.1X configuration menu
duplex configures duplex mode
enable Enables rx and tx on port
disable Disables rx and tx on port
flow-control Configures flow control mode
label Configures label to port
no Negates a command or sets its defaults
qos Configures quality of service
stp Configures spanning tree protocol
speed configures storm control
Configures storm control
```

7.6.8.1 access-control

Configures a port's access control. This accesses the configuration submenu for the entries allowed in an access control list used in a port.

Syntax:

```
ethernetX/X switch config>port <1...n> access-control

-- Port Access Control User Config --

Port Access Control Config>?

class-map Configures a class-map to access control

maximum Configures the maximum number of MAC addresses to learn

no Negate a command or set its defaults

exit
```

7.6.8.1.1 class-map <class-name>

Configures a list of entries allowed to gain port access control. The list is configured as a *class-map* (please see manual bintec *Dm795-I Policy Map-Class Map*).

7.6.8.1.2 maximum <1-255>

Configures a limit for the MAC addresses you want the port to learn.

This limit doesn't affect the entries allowed on the access control list, as these always have access.

Example:

Configuring a permitted entries access control list in port 6 and a limit (value to 5) of learned MAC addresses. The *class-map* must exist before it can be assigned as an access control list:

Note

You can only configure lists of permitted entries in the ports. If you try to configure a list of blocked entries, an error message appears.

7.6.8.2 autonegotiation

Enables auto-negotiation. The link's physical characteristics are negotiated with the other devices connected to the LAN.

Syntax:

```
ethernetX/X switch config>port <identificador de puerto> autonegotiation
    advertise Autonegotiation advertisement configuration
      10BaseT-half-duplex advertises 10BaseT half duplex capability
      10BaseT-full-duplex advertises 10BaseT full duplex capability
      100BaseT-half-duplex advertises 100BaseT half duplex capability
      100BaseT-full-duplex advertises 100BaseT full duplex capability
      flow-control
                            advertises flow control capability
    <cr> Enables Autonegotiation
              Negates a command or sets its defaults
      advertise Autonegotiation advertisement configuration
         10BaseT-half-duplex advertises 10BaseT half duplex capability
         10BaseT-full-duplex advertises 10BaseT full duplex capability
         100BaseT-half-duplex advertises 100BaseT half duplex capability
         100BaseT-full-duplex advertises 100BaseT full duplex capability
         1000BaseT-half-duplex advertises 100BaseT half duplex capability
         1000BaseT-full-duplex advertises 100BaseT full duplex capability
         flow-control advertises flow control capability
```


If devices connected with set speeds connect to an Ethernet interface where auto-negotiation is configured, problems may arise.

The auto-negotiation mode with set speeds will be unable to detect the duplex mode of the other end. Thus, it will configure in half-duplex mode.

Auto-negotiation is mandatory for Gigabit connections. If the speed is set to 1000 Mbps, the device will internally switch to auto-negotiation mode.

7.6.8.3 autonegotiation advertise

Configures the characteristics advertised in auto-negotiation. To disable advertising for a characteristic, use the auto-negotiation no advertise option. The following characteristics can be configured:

- Speed 1Gbps, full duplex mode.
- Speed 1 Gbps, half duplex mode.
- Speed 100Mbps, full duplex mode.
- Speed 100Mbps, half duplex mode.
- Speed 10Mbps, full duplex mode.
- Speed 10Mbps, half duplex mode.
- Flow control: advertise all available flow control options (symmetric or both symmetric and asymmetric).
- · Flow control asymmetric: advertise asymmetric flow control (do not advertise symmetric flow control).
- · Flow control symmetric: advertise symmetric flow control (do not advertise asymmetric flow control).

Example:

Configuring port 1 to negotiate duplex mode (half or full), forcing the speed to 10Mbps.

```
ethernet1/0 switch config>port 1 autonegotiation no advertise 100BaseT-full-duplex
ethernet1/0 switch config>port 1 autonegotiation no advertise 100BaseT-half-duplex
ethernet1/0 switch config>list configuration
                       Auto-negotiation Advertise
                                                Storm Control
Port Ena Aneq Speed Duplex 100FD 100HD 10FD 10HD FlowC Packets Lvl
   Y Y 100 Half - - Y Y Y
                                              Disabled 0
 1
                                                Disabled 0
Disabled 0
Disabled 0
 2 Y Y 100 Half Y Y Y Y
 3 Y Y 100 Half Y Y Y Y
 4 Y Y 100 Half Y Y Y Y
ethernet1/0 switch config>
```

Command history:

11.01.05 Symmetric and asymmetric flow control options have been introduced as of version

7.6.8.4 dot1x

Accesses the 802.1X authentication configuration menu for the switch port. For further information, please see manual bintec Dm783-I 802.1X Authentication.

7.6.8.5 duplex

Configures the duplex mode in half duplex or full duplex.

Syntax:

```
ethernetX/X switch config>port <identificador de puerto>
 duplex configures duplex mode
   half forces half duplex operation mode
   full forces full duplex operation mode
```


If you configure flow control, speed or duplex mode in a port, auto-negotiation in said port is automatically disabled.

7.6.8.6 flow-control

Configures the flow control mode when the port is configured in fixed mode (i.e. with auto-negotiation disabled).

Syntax:

```
ethernetX/X switch config>port <identificador de puerto>
flow-control Configures flow control mode
 disabled Disables flow control mode
 enabled Enables flow control mode
  rx-only Enable asymmetric PAUSE toward local device
  tx-only Enable asymmetric PAUSE toward link partner
```


Note

Flow control is not available in all switches.

Note

Asymmetric flow control is not available in all switches.

Note

If you configure flow control, speed or duplex mode in a port, auto-negotiation in said port is automatically disabled.

Command history:

Release Modification

11.01.05 The "rx-only" and "tx-only" options have been introduced as of version 11.01.05.

7.6.8.7 enable

Enables port transmission and reception.

7.6.8.8 disable

Disables transmission and reception in the port.

Example:

Port 3 is disabled; nothing can be sent or received through it.

```
ethernet3/0 switch config>port 3 disable
ethernet3/0 switch config>list
                             Auto-negotiation Advertise
Port Ena Autoneg Speed Duplex 100FD 100HD 10FD 10HD Flow Control
               _____
   Y Y 100 Half -
Y N 100 Full Y
                   Half - - Y Y
1
                               Y
 2
                                    Y
                                          Y
                                                Y
   N Y 100 Half Y Y Y Y
Y 100 Half Y Y Y Y
 4
ethernet3/0 switch config>
```

7.6.8.9 label

Configures a label in a port to classify the traffic, depending on the port said traffic has entered through.

Syntax

```
ethernetX/X switch config>port <1...n> label <1...99>
```

Example:

```
ethernet0/0 switch config>port 6 label 60
```

7.6.8.10 no autonegotiation

Disables auto-negotiation. As a result, the speed and duplex modes have to match the values configured for the port.

¬ Note

If devices connected with set speeds connect to an Ethernet interface where auto-negotiation is configured, problems may arise.

The auto-negotiation mode with set speeds will be unable to detect the duplex mode of the other end. Thus, it will configure in half-duplex mode.

7.6.8.11 no autonegotiation advertise

Sets the characteristics advertised during auto-negotiation to their default values.

7.6.8.12 qos

Configures the quality of service parameters in a switch port.

Syntax:

```
ethernetX/X switch config>port <port-number> qos
  default-cos Default CoS value for untagged frames
    <0..7> cos value
  rate-limit Configures a limit for the egress rate
   <1..1000>
              rate value (Mbps)
  <0..7>
              cos value
             Configures target for a map
        cos Set the output cos
         <0...7> cos value
  override-cos Fixed CoS value for all frames
   <0..7>
            cos value
  priority
             Scheduling discipline for the port egress queues
   strict Strict discipline for all queues
```

urgent-strict Strict discipline for urgent queue and weighted round robin for all other

wrr Weighed round robin discipline for all queues (default 8-4-2-1)

trust Set what priority indicator should be used in this port

none Use CoS defaults in this port

cos Use CoS values for 802.1Q tagged frames in this port, if not tagged use DSCP dscp Use DSCP values in this port, regardless if frames are 802.1Q tagged or not

default-cos Establishes the COS default value for untagged packets entering this port.

rate-limit Establishes the egress rate limit in the port. The value is set in Mbps.

map Configures the translation table for some COS values. The **map** command establishes which packets, with certain COS values, are re-tagged and transmitted by

the switch with a different COS value. Re-tagging is executed at entry, so the command must specify which port the packets you want re-tagged must enter through.

So that the packets being transmitted are re-tagged, configure the tag-insertion option in the *feature vlan* menu for all ports where the re-tagged packets are trans-

mitted.

override-cos Establishes the COS value that all packets received through this port are going to be transmitted with. So that packets being transmitted are re-tagged, configure the

tag-insertion option in the feature vlan menu for all the ports where re-tagged

packets are transmitted.

priority Establishes the egress queues service discipline for said port. The values allowed

are as follows:

strict: Queues are served with strict discipline. This means packets from a queue are not transmitted if there are packets awaiting transmission in higher-priority queues. E.g. packets in the low queue are not transmitted while there are packets to be transmitted in any of the other three queues. This discipline requires careful configuration, as it can lead to situations where some queues are never served.

urgent-strict: The urgent queue takes strict priority while the other three are served in accordance with the Weighted Round Robin system. This means that packets from the other queues are not transmitted if there are packets in the urgent queue. This discipline also requires caution as it can lead to situations where only urgent queue packets are served.

wrr: All the queues are served in accordance with the Weighted Round Robin system. A weighted table determines how many times the scheduler has polled every queue in each cycle and packets are sent accordingly. This is the switch default operating mode.

Establishes which field is used to prioritize the packets in a port.

Allowable values are as follows:

none: Prioritizes depending on the port's default COS value.

cos: Prioritizes depending on the value of the packet 802.1Q tag COS field. Default is COS.

dscp: Prioritizes depending on the IP packet DSCP value.

trust

Note

Some switches may vary from others, depending on the trust option. When the packet does not have COS, some switches use the DSCP value to prioritize and others do not prioritize said packet. In the same way, if you select the **dscp trust** option and the packet does not have DSCP, some switches use COS to prioritize packets and others don't.

The priority option is not available in all switches. For some, priority is globally configured.

Example 1:

Setting switch port 3 output rate to 20 Mbps.

ethernet0/0 switch config>port 3 qos rate-limit 20

Example 2:

Configuring COS re-tagging in two different ways in two switch ports:

(1) All packets in port 14 are re-tagged by default to COS 5, regardless of the COS value they had on arrival.

(2) All packets entering port 15 with a COS 6 value are re-tagged to COS 5.

```
ethernet0/0 switch config>port 14 qos override-cos 5
ethernet0/0 switch config>port 15 map cos 6 to cos 5
ethernet0/0 switch config>exit
ethernet0/0 config>>exit

Config>feature vlan

VLAN config>enable

VLAN config>vlan 20 ethernet0/0 port 14

VLAN config>vlan 20 ethernet0/0 port 15

VLAN config>vlan 20 ethernet0/0 port 16

VLAN config>tag-insertion ethernet0/0 port 16
```

Example 3:

Configuring the mode for port 7 output queues service discipline to strict.

```
ethernet0/0 switch config>port 7 qos priority strict
ethernet0/0 switch config>
```

Example 4:

Configuring port 3 to use the DSCP field value in input IP packets for prioritization purposes.

```
ethernet0/0 switch config>port 3 qos trust dscp
ethernet0/0 switch config>
```

7.6.8.13 stp

Configures the parameters associated to the Spanning Tree protocol in a switch port. You can configure different Spanning Tree instances in the switch so they operate independently. This is useful when executing Spanning Tree through VLAN. There is an example of this under *Examples*.

Note

If, in the dynamic configuration, the Spanning Tree is enabled or disabled in a port, the Spanning Tree sets machine reboots in all ports concerned.

Syntax:

```
ethernetX/X switch config>port <port-number> stp
           spanning-tree instance
edge-port Edge Port configuration
     admin Configures the port as an edge port
           Configures auto edge port detection
 link-type Link Type Configuration
     point-to-point Configures the port as connected to a point-to-point LAN
     point-to-multipoint Configures the port as not connected to a point-to-point LAN
      autodetect Automatic detection of a point-to-point LAN
 path-cost Port Path Cost
           <0..200000000> Port Path-cost
      priority Port Priority for this stp instance
          <0..255> Port Priority
 bpdu-filter don't send or receive BPDUs for this port
     enable Enables BPDU filtering on this port
     disable Disables BPDU filtering on this port
 bpdu-guard don't accept BPDUs on this port
     enable Enables BPDU guard on this port
     disable Disables BPDU guard on this port
 edge-port Edge Port configuration
      admin Configures the port as an edge port
      auto Configures auto edge port detection
 enable enables spanning-tree on this port
      instance spanning-tree instance
       <1..16>
                           spanning-tree instance
 disable
              disables spanning-tree on this port
 link-type Link Type Configuration
      point-to-point Configures the port as connected to a point-to-point LAN
                            Configures the port as not connected to a point-to-point LAN
       point-to-multipoint
```

```
autodetect Automatic detection of a point-to-point LAN

path-cost Port Path Cost

<0..200000000> Port Path-cost

priority Port Priority

<0..255> Port Priority
```


→ Note

Spanning Tree parameters can be configured globally or through the spanning tree instance. If you configure the value through instance, this value takes priority over a global value for said parameter. If the instance is left blank, the global value configured is used.

Bpdu-filter Enables (bpud-filter enable) or disables (bpdu-filter disable) BPDUs filtering

in the port.

Bpdu-guard Enables (bpdu-guard enable) or disables (bpdu-guard disable) BPDUs guard

in the port.

Edge port Configures the parameters for the RSTP bridges detection states machine func-

tion. If a port is established as directly connected to a station (*EdgePort*), the Spanning Tree protocol convergence in the port is faster. The **edge-port admin** option configures the port as *EdgePort* by default. However, the states machine can change the port to *Non EdgePort* when BPDUs are received through it. If you select the **edge-port auto** option, the Spanning Tree protocol decides if a port is directly connected to a station or not. Both options are not exclusive. By default,

the port is not detected as EdgePort and auto-detection is disabled.

enableEnables Spanning Tree protocol in a given switch port.instanceSpanning Tree instance to which the port is associated.disableDisables Spanning Tree protocol in a certain switch port.

Link type Configures the type of link for the port: connected to a point to point link (link-

type point-to-point option), connected to a point-to-multipoint link (link-type point-to-multipoint option), or detected by the Spanning Tree protocol (link-type

autodetect option). The latter is the default option.

Path Cost
Cost associated to the port, used in the Spanning Tree protocol, to calculate the

cost of the path to the root bridge. Ranges from 1 to 65535. A 0 value is used to indicate the default cost. A cost is automatically assigned, depending on the type

of interface the port refers to.

Port Priority Port priority. Ranges from 0 to 255. The 4 least significant bits for the priority must

be 0. If they aren't, the device rounds them up to the nearest valid priority. Default

for a port priority is 128.

Example 1:

Two Spanning Tree instances are used: one for ports 1 and 3 and the other for switch ports 3, 5, 6, and 7.

```
ethernet0/0 switch config>port 1 stp enable instance 1
ethernet0/0 switch config>port 3 stp enable instance 1
ethernet0/0 switch config>port 3 stp enable instance 2
ethernet0/0 switch config>port 5 stp enable instance 2
ethernet0/0 switch config>port 6 stp enable instance 2
ethernet0/0 switch config>port 7 stp enable instance 2
```

Example 2:

Configuring the global priority associated to port 3.

```
ethernet0/0 switch config>port 3 stp priority 56 value rounded to 48 ethernet0/0 switch config>
```

Example 3:

Configuring the priority associated to port 3 for Spanning Tree instance 1.

```
ethernet0/0 switch config> port 3 stp 1 priority 64 ethernet0/0 switch config>
```

Example 4:

Configuring port 1 as a port directly connected to a station (link not shared with more bridges).

```
ethernet0/0 switch config>port 1 stp edge-port admin
```

```
ethernet0/0 switch config>
```

Example 5:

Configuring the link port 2 is connected to as point-to-point (port directly connected to another bridge).

```
ethernet0/0 switch config>port 2 stp link-type point-to-point
ethernet0/0 switch config>
```

Example 6:

Configuring BPDUs filtering in port 6.

```
ethernet0/0 switch config>port 6 stp bpdu-filter enable ethernet0/0 switch config>
```

7.6.8.14 speed

Configures the speed: 10 Mbps, 100 Mbps or 1 Gbps (when supported by the device) .

Syntax:

```
ethernetX/X switch config>port <port identifier>
    10Mbps    Forces 10Mbps
    100Mbps    Forces 100Mbps
    1Gbps    Forces 1Gbps
```


⇒ Note

If you configure flow control, speed or duplex mode in a port, auto-negotiation for said port is automatically disabled.

Auto-negotiation is mandatory for Gigabit connections. If the speed is set to 1000 Mbps, the device will internally switch to auto-negotiation mode.

Configuration for port 2 at 100Mbps and full duplex.

7.6.8.15 storm-control

Configures the traffic storm control in a port. You can enable/disable and configure the type of frames calculated and bandwidth occupation to trigger traffic control.

Syntax:

```
ethernetX/X switch config>port <identificador de puerto>
storm-control Configures storm control
enable Enables storm control on a given port
disable Disables storm control on a given port
all All frames storm control
level <level> Incoming traffic bandwidth to start storm protection
broadcast Broadcast address storm control
level <level> Incoming traffic bandwidth to start storm protection
include multicast Multicast address storm control
level <level>
include flooded-unicast Flooded unicast storm control
level <level>
```


Note

In some switches, traffic control parameters are globally configured for all switch ports. Similarly, the type of configurable frames varies from switch to switch.

Example 1:

Switch with control type and traffic level per port.

Traffic storm control, configured in port 2, is associated to unicast and multicast frames with a 10 % bandwidth.

In this kind of switches, the type of traffic control and the level can be configured independently for each port.

		0 swit	ch conf	ig>port	2 storm	m-cont:	rol bi	coadca	ast inc	lude multicast	
leve:		0 swit	ch conf	ig>list	conf						
				,		negotia	ation	Adve	rtise	Storm Conti	rol
Port	Ena	Aneg	Speed	Duplex	100FD	100HD	10FD	10HD	FlowC	Packets	Lvl
1	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
2	Y	Y	100	Half	Y	Y	Y	Y	Y	Bcst-Mcst	10
3	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
4	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
5	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
6	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
7	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
8	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
9	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
10	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
11	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
12	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
13	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
14	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
15	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
16	Y	Y	100	Half	Y	Y	Y	Y	Y	Disabled	0
ethe:	net0/	0 swit	ch conf	ig>							

Example 2:

Switch with global control and traffic level per port.

Traffic storm control, configured in ports 2 and 4, is associated to unicast and multicast frames with a 10% bandwidth.

In this kind of switches, the type of traffic control is common to all switch ports. However, the level is programmable per port.

Example 3:

Switch with global traffic control and level.

Traffic storm control, configured in port 2, is associated to unicast and multicast frames with a 10% bandwidth.

In this kind of switches, the type of traffic control and the level are common to all ports.

Port	Ena	Aneg	Speed	Duplex	100FD	100HD	10FD	10HD	FlowC	Packets	Lvl
1	Y	Y	1000	Half	Y	Y	Y	Y	Y	Bcst-Mcst	10
2	Y	Y	1000	Half	Y	Y	Y	Y	Y	Bcst-Mcst	10
3	Y	Y	1000	Half	Y	Y	Y	Y	Y	Bcst-Mcst	10
4	Y	Y	1000	Half	Y	Y	Y	Y	Y	Bcst-Mcst	10
ether	net0/	0 swit	ch conf	ig>							

7.6.9 QOS

Configures the global quality of service parameters. These parameters affect all ports in the switch.

Syntax:

```
ethernetX/X switch config>qos ?
  map    Set a priority map
  set    Set a priority queue param
```

7.6.9.1 MAP

Configures the COS or DSCP values in assignment maps to the output port queues.

Syntax:

```
ethernet X/X switch config>qos map {cos| dscp| default} [ <value> to queue <queue> ]
          Configures a cos matching criteria
   <0..7>
          cos value
    to queue
       urgent Urgent Priority Queue
       high
               High Priority Queue
              Normal Priority Queue
       normal
       low Low Priority Queue
 dscp Configures a dscp matching criteria
   <0..63> dscp value
    to queue
       urgent Urgent Priority Queue
       high High Priority Queue
      normal Normal Priority Queue
       low Priority Queue
 default Restore the default cos/dscp priority map
```

Example 1:

Packets with COS equal to 1 are queued in the urgent priority queue.

```
ethernet0/0 switch config>qos map cos 1 to queue urgent
ethernet0/0 switch config>
```

Example 2:

Packets with DSCP equal to 32 are queued in the normal priority queue.

```
ethernet0/0 switch config>qos map dscp 32 to queue normal ethernet0/0 switch config>
```

Example 3:

Restore the COS and DSCP default assignments for the output queues.

```
ethernet0/0 switch config>qos map default
ethernet0/0 switch config>
```

Default allocation for COS is:

cos	Queue
0	Low
1	Low
2	Normal
3	Normal

4	High
5	High
6	Urgent
7	Urgent

For DSCP, all values are assigned to the *normal* gueue, with *normal* priority, by default.

7.6.9.2 SET

Configures the Quality of Service global parameters.

Syntax:

```
ethernetX/X switch config>qos set

queue Priority queue

priority Scheduling discipline for the switch egress queues
```

7.6.9.2.1 SET QUEUE

Configures the weighted table the scheduler is going to use in each output queue for a port, when said port is configured in Weighted Round Robin mode.

The weighted tables define the relative priority of one queue compared to another. The weight assigned to each queue establishes how many times the scheduler checks for the presence of packets in said queue, for each of the scheduler's cycles.

In each check, if a packet is found in the queue, it is transmitted (provided the output rate control allows this). In practice, when faced with congestion, the scheduler assumes the output rate is shared in the following proportions: 53% (8/15), 27% (4/15), 13% (2/15), 7% (1/15).

Syntax:

```
ethernet X/X switch config>qos set queue <queue> weight <value>
queue:

Queue you want to configure. Possible values are: urgent, high, normal and low.

Value:

Weight value to assign to the queue. This ranges from <1..100> or <1..49> depending on the switch. The sum of the weights can be below or above the 100 value, as the relative weight for each queue is equal to the value configured, divided by the sum of the weights for the four queues.
```

Example:

Sets a weighted table for the 60-30-9-1 Urgent-High-Normal-Low queues.

```
ethernet0/0 switch config>qos set queue low weight 1
ethernet0/0 switch config>qos set queue normal weight 9
ethernet0/0 switch config>qos set queue high weight 30
ethernet0/0 switch config>qos set queue urgent weight 60
ethernet0/0 switch config>
```

7.6.9.2.2 SET PRIORITY

Sets service priorities for outgoing switch queues.

Syntax:

ethernetX/X switch config>qos set priority <strict|urgent-strict|wrr>

- Priority can take the following values:
- strict: The queues are served with strict priority. This means that packets are not transmitted when there are packets in higher priority queues awaiting transmission (i.e., packets in the low queue are not transmitted if packets in the other three queues are awaiting transmission). One needs to be careful with this priority, as it can lead to some queues never transmitting anything.
- urgent-strict: The urgent queue transmits with a strict priority and the other three queues with Weighted Round
 Robin priority. This means that packets from the other queues are not transmitted if there are packets in the urgent
 queue. This priority must also be used carefully, as it can lead to situations where only packets from the urgent
 queue are transmitted.
- wrr: All queues are transmitted in accordance with the Weighted Round Robin system. This means they are transmitted in a cycle, according to a weighted table that determines how many times polling is planned for each queue in each cycle. This is the default mode for the switch feature.

7.6.10 STORM-CONTROL

Configures the global parameters for traffic storm control.

Note

This command does not appear in switches where traffic control configuration is carried out per port.

Syntax:

```
ethernetX/X switch config>storm-control <type-of-packets> level <level>
```

type-of-packet: Types of packets to consider for traffic storm control. These can be broadcast or broadcast and multicast.

Example:

Traffic storm control configuration to calculate broadcast frames and to limit the frames to 15 percent of the bandwidth.

ethernet2/0 switch config>storm-control broadcast include multicast level 15

7.6.11 STP

Configures the global parameters associated to a Spanning Tree protocol instance.

Syntax:

```
ethernetX/X switch config>stp ?
 <1..16> Spanning Tree Protocol instance
      bpdu-filter Configures BPDU filter globally
                         Configures BPDU guard globally
       bpdu-guard
       bridge-address
                         Configures Bridge Address
           <mac-address>
       vlan
                         Configures Bridge VLAN STP Id
             <vlan-id>
                           1..4094
       bridge-priority Configures Bridge Priority
       forward-delay Configures Bridge Forward max-age Configures Bridge Max Age
                        Configures Bridge Forward Delay
       protocol-version Configures Spanning-Tree Protocol Version
       tx-hold-count Configures Transmit Hold Count
```

7.6.11.1 BPDU-FILTER DEFAULT

Enables BPDU filtering by default in all ports in Edge Port mode. To disable the default BPDU filtering, enter no.

7.6.11.2 BPDU-GUARD DEFAULT

Enables BPDU guard by default in all ports in Edge Port mode. To disable the default BPDU guard, enter no.

7.6.11.3 BRIDGE-ADDRESS

Configures the bridge MAC address.

Example:

```
ethernet0/0 switch config>stp 1 bridge-address 00-a0-24-31-11-23 ethernet0/0 switch config>
```


Note

Each bridge in the network must have a unique MAC address for the Spanning Tree protocol to operate correctly.

The configured address is used in the 6 octets that belong to a lower order from the bridge identifier. If a MAC address isn't configured in the bridge, the device uses the one associated to the switch (where possible).

7.6.11.4 VLAN

Configures the Bridge VLAN ID used in PVST+ (Per VLAN Spanning Tree) environment. All ports assigned to this bridge instance must be members of the VLAN used. The VLAN is in the 1..4094 range. VLAN 1 is used to build a spanning tree common to all VLANs. Unlike what happens with other manufacturers, here you need to explicitly create the instance associated to VLAN 1. Please see the chapter on *Examples* for a configuration example.

Syntax:

ethernet0/0 switch config>stp <instance> vlan <vlan-id>

Note

If you do not assign a VLAN identifier to the Spanning Tree instance, make sure all ports assigned to this Spanning Tree instance are not assigned to other Spanning Tree instances. To configure PVST+, ensure you create an instance associated to VLAN 1.

Example 1:

Configuration for PVST+ instances associated to VLANs 21, 22 and 30. Port 4 uses VLAN 30 as native VLAN.

```
ethernet0/0 switch config>port 1 stp enable instance 2
ethernet0/0 switch config>port 1 stp enable instance 3
ethernet0/0 switch config>port 2 stp enable instance 2
ethernet0/0 switch config>port 2 stp enable instance 4
ethernet0/0 switch config>port 3 stp enable instance 3
ethernet0/0 switch config>port 4 stp enable instance 4
ethernet0/0 switch config>stp 2 vlan 21
ethernet0/0 switch config>stp 3 vlan 22
ethernet0/0 switch config>stp 4 vlan 30
ethernet0/0 switch config>exit
ethernet0/0 config>exit
Config>feature vlan
VLAN config>enable
VLAN config>vlan 20 ethernet0/0 port 1
VLAN config>vlan 20 ethernet0/0 port 2
VLAN config>vlan 21 ethernet0/0 port 2
VLAN config>vlan 21 ethernet0/0 port 3
VLAN config>vlan 30 ethernet0/0 port 2
VLAN config>vlan 30 ethernet0/0 port 4
VLAN config>tag-default ethernet0/0 port 4 30
VLAN config>tag-removal ethernet0/0 port 4 30
VLAN config> exit
```

Example 2:

Configuration for a common instance associated to VLAN 1.

```
ethernet0/0 switch config>port 3 stp enable instance 1
ethernet0/0 switch config>port 4 stp enable instance 1
ethernet0/0 switch config>stp 1 vlan 1
ethernet0/0 switch config>exit
ethernet0/0 config>exit
```

7.6.11.5 BRIDGE-PRIORITY

Configures the priority assigned to the bridge used to form, together with the bridge MAC address, the bridge identifier. The value must be between 0 and 65535. The 12 least significant bits for the priority must be 0. If they aren't, the device rounds them up to the nearest valid priority. Default priority for a port is 32768.

Example:

```
ethernet0/0 switch config>stp 2 bridge-priority 32120
value rounded to 28672
ethernet0/0 switch config>
```

AN Interfaces 6°

7.6.11.6 FORWARD-DELAY

Configures the time interval that goes by before there is a change in the state of a port (where the bridge has been selected as the Spanning Tree root bridge). Admissible values range from 4 to 30 seconds. Default is 15 seconds.

Example:

ethernet0/0 switch config>stp 1 forward-delay 30 ethernet0/0 switch config>

Note

When configuring this parameter, ensure the following condition is fulfilled:

2 * (Bridge Forward Delay - 1 second) > Bridge Maximum Age

Configures the maximum time period during which the information received in the Spanning Tree protocol is valid. Admissible values range from 6 to 40 seconds. Default is 20 seconds.

Example:

```
ethernet0/0 switch config>stp 2 max-age 13
ethernet0/0 switch config>
```


Note

When configuring this parameter, ensure the following conditions are fulfilled:

2 * (Bridge Forward Delay - 1 second) > Bridge Maximum Age

Bridge Maximum Age > 2 * (Bridge Hello Time + 1 second)

The Bridge Hello Time value is not configurable. It is set to 2 seconds.

7.6.11.7 PROTOCOL-VERSION

Configures the Spanning Tree protocol version running in the device.

Syntax:

```
ethernetX/X switch config>stp <instance> protocol-version
stp-compatibility STP Compatibility Mode
rstp-normal-operation RSTP Normal Operation
stp-compatibility Device executes the old Spanning Tree protocol defined in the 802.1D-1998
```

standard. Spanning Tree BPDUs are used and RSTP (Rapid Spanning Tree Pro-

standard. Spanning free Drugs are used and note (napid Spanning free rio-

tocol) frames are not sent.

rstp-normal-operation Device executes the Rapid Spanning Tree protocol. This protocol is an upgrade of

the quicker convergence Spanning Tree. This is done by default.

Example:

```
ethernet0/0 switch config>stp 1 protocol-version stp-compatibility ethernet0/0 switch config>
```

7.6.11.8 TX-HOLD-COUNT

Maximum number of BPDUs sent through a port in one second. Admissible values range from 1 to 10. Default is 6 BPDUs.

Example:

```
ethernet0/0 switch config>stp 2 tx-hold-count 4 ethernet0/0 switch config>
```

7.6.12 EXIT

Exits the switch configuration menu.

Syntax:

ethernetX/X switch config>exit

Example:

ethernet3/0 switch config>exit ethernet3/0 config>

8 Switch Monitoring bintec elmeg

Chapter 8 Switch Monitoring

8.1 Introduction

This chapter describes the switch monitoring commands and includes the following sections:

- · Accessing switch monitoring.
- · Switch monitoring commands.

8.2 Accessing Switch Monitoring

Some of our devices have a switch that is internally connected to an Ethernet interface. To access switch monitoring, enter **repeat-switch** at the monitoring menu prompt for said Ethernet interface.

Example 1:

```
+configuration
7 interfaces:

Connector Interface MAC/Data-Link Status

LAN1 ethernet0/0 Ethernet/IEEE 802.3 Down

SERIALO/WAN1 serial0/0 Auto Install Down

SERIALI/WAN2 serial0/1 X25 Down

SERIAL2/WAN3 serial0/2 X25 Down

BRI/ISDN1 bri0/0 BRI Net Up

--- x25-node internal Up

**SLOT3 ethernet3/0 Ethernet/IEEE 802.3 Up**

+network ethernet3/0

--- Ethernet Console --- ethernet3/0 ETH+repeater-switch

-- Switch Monitoring Console --- ethernet3/0 Switch+
```

Example 2:

```
+configuration
4 interfaces:

Connector Interface MAC/Data-Link Status

LAN1 ethernet0/0 Ethernet/IEEE 802.3 Up

DSL1 atm0/0 ATM Down

BRI/ISDN1 bri0/0 BRI Net Up

--- x25-node internal Up

+network ethernet0/0

-- Ethernet Console --
ethernet0/0 ETH+repeater-switch

-- Switch Monitoring Console --
ethernet0/0 Switch+
```

8.3 Switch Monitoring Commands

The following table summarizes the switch monitoring commands.

Note

Not all commands specified in this section are available for all Ethernet interfaces. Depending on the device, or on the interface you are monitoring, some commands may not appear.

Similarly, the information displayed on executing a command can vary from one interface to another.

Command	Function
? (HELP)	Displays the switch commands or their options.
CLEAR	Deletes information stored in the switch.
DOT1X	Accesses the 802.1X monitoring menu for a switch port.

LIST Displays different switch operating parameters.

NO Deactivates previously configured parameters.

PORT-MONITOR Configures port monitoring.

SNIFF Configures the type of packets for a port, which must be reflected in the listening

port.

SNIFFER-PORT Configures a port as listening.

SPANNING-TREE Configures Spanning Tree Protocol parameters.

EXIT Exits the switch monitoring menu.

8.3.1 ? (HELP)

Displays the available commands and their options.

Syntax:

```
ethernetX/X Switch+?
```

Example:

8.3.2 CLEAR

Deletes information stored in the switch.

Syntax:

8.3.2.1 CLEAR STATS

Deletes statistics for all switch ports.

Syntax:

ethernetX/X Switch+clear stats

8.3.2.2 CLEAR STATS CPU-PORT

Deletes statistics for the connection between the switch and the internal port.

Syntax:

```
ethernetX/X Switch+clear stats cpu-port
```

8 Switch Monitoring bintec elmeg

8.3.2.3 CLEAR STATS CONNECTION-PORTS

Deletes statistics for the connection between devices that make up the switch. This is only valid for switches with more than 8 ports.

Syntax:

ethernetX/X Switch+clear stats connection-ports

8.3.2.4 CLEAR STATS < PORT>

Deletes statistics for a port in the switch.

Syntax:

ethernetX/X Switch+clear stats <port identifier>

Example:

ethernet0/0 Switch+clear stats 1 ethernet0z/0 Switch+

Deletes statistics associated to port 1:

8.3.2.5 CLEAR DYNAMIC-MAC-TABLE

Deletes the dynamic table for MAC addresses: deletes the MAC addresses learned by the switch.

Syntax:

ethernetX/X Switch+clear dynamic-mac-table

8.3.2.6 CLEAR MAC-ADDRESS

Deletes a MAC address from the address table learned by the switch. Deleting a MAC address here may cause issues if access control is enabled in the switch.

Svntax:

ethernetX/X Switch+clear mac-address <MAC address>

Example:

Deletes MAC address 00-00-E8-3D-26-97 from the address table learned by the switch.

ethernet0/0 Switch+clear mac-address 00-00-e8-3d-26-97
Warning!!!
Deleting an entry may result in improper behavior of the access control functionality
Continue (Yes/No)? y
Address 0000E83D2697 deleted
ethernet0/0 Switch+

Command history:

Release Modification

11.00.04 A warning appears when deleting a MAC address as of version 11.00.04.

8.3.2.7 CLEAR STP <instance> COUNTERS

Clears the counters associated to a Spanning Tree protocol instance.

8.3.3 DOT1X

Accesses the 802.1X monitoring menu for a switch port. For further information on 802.1X authentication, please see manual bintec *Dm783-I 802.1X Authentication*.

Syntax:

ethernetX/X Switch+dot1x <port identifier>

Example:

Accesses the 802.1X authentication monitoring menu for port 3:

```
ethernet0/0 Switch+dot1x 3
-- 802.1X Console --
ethernet0/0 (port 3) DOT1X+
```

8.3.4 LIST

Displays information on the switch.

Syntax:

```
ethernetX/X Switch+list ?
 access-control Access Control tables used configuration Ports configuration
stp Spanning Tree Protoc vlan VLAN
counters Internal switch counters
                                    Spanning Tree Protocol
  dynamic-mac-table Dynamic MAC addresses table
        <port>
         <port>
cpu-port
                                    Port number
                                    CPU connection port
         connection-ports Device connection ports
        table MAC addresses table <port> Port number cpu-port CPU
  mac-table
                                     CPU connection port
         <cr>
                   Find a MAC into address dynamic table
  mac-address
        <mac> MAC format
 registers Display register information
global Global switch registers
physical Physical switch registers
port Port switch registers
remote-status Remote end information
sniffer Sniffer status
                                    Physical switch registers
 static-mac-table Static MAC addresses table
                       Ports statistics
 stats
status
 status Ports status storm-control Storm control status
 stp Spanning Tree Protocol status vlan-table VLAN table
ethernet3/0 Switch+
```

8.3.4.1 LIST ACCESS-CONTROL

Displays information on the entries the software uses for access control in the switch ports.

Syntax:

```
ethernetX/X Switch+list access-control
```

Example:

```
ethernet0/0 Switch+li access-control
Port: CPU
------
Port: 1
-----
Discarded packets MAC out of limits 0
Learned addresses 0
Port: 2
-----
Discarded packets MAC out of limits 64
Learned addresses 2
Address: 00-a0-26-a6-20-16 VID 1
Address: 00-a0-26-32-00-02 VID 1
Port: 3
```

```
Discarded packets MAC out of limits 0

Learned addresses 0

Port: 4

-----

Discarded packets MAC out of limits 0

Learned addresses 0

Ethernet0/0 Switch+
```

Discarded packets MAC out of limits: Number of discarded packets in a switch port from a MAC that hasn't been learned (i.e., the maximum value specified in the configuration has been reached).

Learned addresses: number of entries learned in the port. Entries that are not in the permitted list are the only ones counted. Using this option only makes sense when the port has a maximum of learned entries configured. It also displays the entry MACs learned.

8.3.4.2 LIST CONFIGURATION STP

Displays the ports configuration on the Spanning Tree protocol.

Syntax:

ethernetX/X Switch+list configuration stp

Example:

```
ethernet1/0 Switch+list configuration stp

Port Tx Rx Learning
---- --- ---- 1 Yes Yes Yes
2 Yes Yes Yes
3 Yes Yes Yes
4 Yes Yes Yes
5 Yes Yes Yes
ethernet1/0 Switch+
```

The following is listed for each switch port: if transmission is permitted, if reception is permitted and if MAC address learning is permitted.

8.3.4.3 LIST CONFIGURATION VLAN

Displays the configuration for VLANs in the switch ports.

Syntax:

ethernetX/X Switch+list configuration vlan

Example:

The following fields are displayed:

802.1Q VLAN Indicates whether the treatment of VLANs is enabled in the switch.

Indicates whether the special tag is enabled in the switch (characteristic used for

Special TPID the Spanning Tree to work).

Tag insertion Indicates whether the frames are tagged when they exit through the port.

Indicates whether the tags are removed from the frames when they exit through

Tag removal the port.

Membership VLAN Port mapping. Indicates the ones a certain port can communicate with.

PVID Default VLAN tag for the port.

Ingress Filter Indicates whether the frames with a VLAN that isn't a member of the port are

dropped.

Discard Non PVID Indicates whether the frames with a VLAN tag that is different from the one con-

figured by default at the port must be dropped at entry.

8.3.4.4 LIST COUNTERS

Displays the frames sent and received by each switch port. The frames are classified as *unicast*, *multicast* and *broadcast*.

Syntax:

ethernetX/X Switch+list counters

Example 1:

ethernet	0/0 Switch+li	st counters				
PORT	*****	*** IN *****	*****	******	*** OUT *****	*****
NUMBER	Unicast	Broadcast	Multicast	Unicast	Broadcast	Multicast
01	43995	4715	665	10	0	0
02	0	0	0	0	0	0
03	0	0	0	0	0	0
04	0	0	0	0	0	0
05	0	0	0	0	0	0
06	0	0	0	0	0	0
07	0	0	0	0	0	0
08	0	0	0	0	0	0
09	0	0	0	0	0	0
10	0	0	0	0	0	0
11	0	0	0	0	0	0
12	0	0	0	0	0	0
13	0	0	0	0	0	0
14	0	0	0	0	0	0
15	0	0	0	0	0	0
16	0	0	0	0	0	0
INT	10	0	0	15058	4715	665
ethernet	0/0 Switch+					

The meaning of the fields is as follows:

Port Number: Switch port identifier. The INT identifier refers to the internal port (port internally

connected to the device).

IN Unicast: Unicast frames received by a port.
 IN Multicast: Multicast frames received by a port.
 IN Broadcast: Broadcast frames received by a port.
 OUT Unicast: Unicast frames transmitted by a port.
 OUT Multicast: Multicast frames transmitted by a port.
 OUT Broadcast: Broadcast frames transmitted by a port.

Note

Some devices do not support an atomic reading of all counters. If any counters are updated during the reading, an asterisk is shown next to the value of the counter to warn about possible inaccuracies.

Example 2:

ethernet	:0/0 Switch+li	st counters				
PORT	*****	*** IN *****	*****	*****	** OUT ****	*****
NUMBER	Unicast	Broadcast	Multicast	Unicast	Broadcast	Multicast
01	172	798	1104	0	0	0
02	0	0	0	0	0	0

03	0	0	0	0	0	0					
04	0	0	0	0	0	0					
05	5473899*	1*	0	1488147	0	0					
CPU	1488371	0	0	5474121*	798*	1104					
* Inaccurate value because of counter update during read											
ethernet0/0 Switch+											

Command history:

Release Modification

11.01.05 An inaccuracy notification has been introduced as of version 11.01.05.

8.3.4.5 LIST DYNAMIC-MAC-TABLE

Displays the table of MAC addresses learned by the switch.

Syntax:

ethernetX/X Switch+list dynamic-mac-table

Example 1:

	et3/0 Switch+ of valid ent	-	c-mac-table		
			Source port	FilterID	MAC ADD
1	2	0	4	0	00000c07ccc
2	2	0	4	0	0000E28B0336
3	2	0	4	0	0000E83DA504
4	2	0	4	0	000102211C46
5	2	0	4	0	00010233FFFF
6	1	0	4	0	000102AEA6E6
7	2	0	4	0	000102DCC74C
8	2	0	4	0	000102DCCAA5
9	2	0	4	0	000102DCCAAB
10	1	0	4	0	000102DCCAE3
11	2	0	4	0	000102DCCB65
ethern	et3/0 Switch+	ŧ .			

The meaning of the fields is as follows:

Entry: Entry identifier in the MAC table.

Time stamp: Internal counter to consider an entry as valid.

Data ready: Indicates whether the entry is valid (1) or not (0).

Source port: Switch port through which the MAC address has been learned.

Filter ID: Identifier used to discriminate between the 16 VLANs that can be defined in the

switch.

MAC ADD: MAC address learned.

Example 2:

ethern	et0/0 S	witch	+list	dynamic-m	ac-tab	le	
DBNum	Entry	Dev	Prio	PortMap	Port	State	MAC Address
0	1	1	0	0x0001	1	0x1	00005E000103
0	2	1	0	0x0001	1	0x1	000C76CCC47E
0	3	1	0	0x0001	1	0x1	0016E6D3FFF1
0	4	1	0	0x0001	1	0x1	001A4D6B6AB1
0	5	1	0	0x0001	1	0x1	001CF0ECBF0E
0	6	1	0	0x0001	1	0x1	00235431A647
0	7	1	0	0x0001	1	0x1	0023546B5D91
0	8	1	0	0x0001	1	0x1	00A02600AA30
0	9	1	0	0x0001	1	0×1	00A026220601
0	10	1	0	0x0001	1	0x1	00A0262822AA
0	11	1	0	0x0001	1	0×1	00A026329080
0	12	1	0	0x0001	1	0x1	00A02632C568

0	13	1	0	0x0001	1	0x1	00A02632C578
0	14	1	0	0x0001	1	0x1	00A02632FAA8
0	15	1	0	0x0001	1	0x1	00A0264E004C
0	16	1	0	0x0001	1	0x1	020001110005
0	17	1	0	0x0001	1	0x1	020001110007
0	18	1	0	0x0001	1	0x1	90E6BADF9B88
ethe	ernet0/0	Swite	ch+				

The meaning of the fields is as follows:

DBNum: Internal database identifier where the MAC address is located. For VLANs, each

VLAN handles a different internal database.

Entry: Entry identifier in the MAC table.

Dev: In switches made up of various modules, module identifier.

Prio: Priority associated to the MAC entry.

PortMap: Port map for those sending frames with the specified MAC. For dynamic ad-

dresses, this corresponds to the port the MAC has been learned through.

Port: Switch port through which the MAC address has been learned. With static ad-

dresses, this field is not active whenever a packet can be transmitted through vari-

ous ports.

State: State of the MAC entry.

This value depends on the type of MAC address installed in the table. This can take the following values:

 State
 MAC Type

 0x0
 Invalid entry.

 0x1
 Unicast dynamic.

 0x8, 0x9, 0xA, 0xB, 0xC,0xD, 0xE, 0xF
 Static Unicast.

 0x4, 0x5, 0x6, 0x7, 0xC, 0xD, 0xE, 0xF
 Static Multicast.

MAC ADD Learned MAC address.

8.3.4.6 LIST MAC-TABLE

Displays all the MAC addresses learned by the switch.

Syntax:

ethernetX/X Switch+list mac-table

Example 1:

ethernet0/0 Switch+list mac-table

1 D 0 1 00-0c-29-60-1b-ee 220 2 D 0 1 40-61-86-f7-18-07 300 3 D 0 1 00-16-e6-38-eb-da 220 4 D 0 1 3c-d9-2b-56-16-24 180 5 D 0 1 f0-1f-af-ec-a6-f1 300	Entry	Type	FID	PortId	MAC Address	Age Timer
3 D 0 1 00-16-e6-38-eb-da 220 4 D 0 1 3c-d9-2b-56-16-24 180	1	D	0	1	00-0c-29-60-1b-ee	220
4 D 0 1 3c-d9-2b-56-16-24 180	2	D	0	1	40-61-86-f7-18-07	300
	3	D	0	1	00-16-e6-38-eb-da	220
5 D 0 1 f0-1f-af-ec-a6-f1 300	4	D	0	1	3c-d9-2b-56-16-24	180
	5	D	0	1	f0-1f-af-ec-a6-f1	300

The meaning of the fields is as follows:

Entry: Entry identifier in the MAC table.

Type: Indicates if the entry is static or dynamic address.

FID: Identifier used to discriminate between the 16 VLANs that can be defined in the

switch.

PortId: Switch port the MAC address has been learned through.

MAC ADD: Learned MAC address.

Age Timer: Aging time for MAC address table entries. Ranges from 1 to 3600 seconds.

8.3.4.7 LIST MAC-ADDRESS

Displays the contents of the MAC addresses table associated to a specific MAC address.

Syntax:

```
ethernetX/X Switch+list mac-address <mac>
```

Example:

```
ethernet0/0 Switch+list mac-address 00A0267C0043

DBNum Entry Dev Prio PortMap Port State MAC Address
------
0 1 1 0 0x0001 1 0x1 00A0267C0043

ethernet0/0 Switch+
```

8.3.4.8 LIST REGISTERS

Displays the content of the switch's internal registers.

Syntax:

```
ethernetX/X Switch+ list registers ?

global Global switch registers

physical Physical switch registers

port Port switch registers
```

global Switch global registers.

physical Registers associated to the PHYTER for a switch port.

port Registers associated to a switch port.

Example:

```
ethernet0/0 Switch+list registers global
Print Global (Set-1) registers device 1
0 ... e804 0000 0000 0000 440a 1000 0000 0000
8 ... 0000 0000 0161 4000 0807 00a0 267c 0043
10 ... 0000 0000 5555 5555 aaaa aaaa fffff ffff
18 ... fa50 0000 ffaf 00f4 2001 4c12 0003 fc0d
Print Global (Set-2) registers device 1
0 ... 0000 0000 ffff 0008 0258 04ff 0208 07ff
8 ... 0000 3707 0000 1000 07ff 0000 000c 0000
18 ... 18e1 78ed 0000 f869 0000 07ff 0000 0000
Print Global (Set-1) registers device 2
0 ... e854 0000 0000 0000 440a 1000 0000 0000
8 ... 0000 0000 0161 4000 1007 00a0 267c 0043
18 ... fa50 0000 ff8f 00f8 2002 4c12 0000 0000
Print Global (Set-2) registers device 2
0 ... 0000 0000 ffff 0008 0258 04ff 0000 07ff
8 ... 0000 3f01 0004 1000 07ff 0000 000c 0000
18 ... 1801 78c9 0000 f869 0000 07ff 0000 0000
ethernet0/0 Switch+list registers physical 1
Print PHY registers port 1 (hwport 7)
0 ... 3100 78ed 0141 0c89 05e1 45e1 0007 2801
10 ... 4130 7c00 6c01 0000 0000 0000 4a34 03fc
18 ... 42bf 0000 0000 0000 0002 0000 0000 0000
ethernet0/0 Switch+list registers port 1
Print PORT registers port 1 (hwport 7, devnum 1)
0 ... fd06 0003 9f00 0992 007f 0000 077f 0001
18 ... 3210 7654 610c 0024 0000 0c84 0022 4444
ethernet0/0 Switch+
```

8.3.4.9 LIST REMOTE-STATUS

Displays information on the status of the remote end connected to each switch port.

Syntax:

ethernetX/X Switch+list remote-status

Example 1:

ethernet3/0 Switch+list remote-status												
		Autoneg Auto-negotiation Advertise										
Port	Lnk	MDIX	complete	1000FD	1000HD	100FD	100HD	10FD	10HD	Flow Control		
1	N	Y	N	-	-	-	-	-	-	-		
2	Y	N	Y	-	-	Y	Y	Y	Y	Y		
3	N	Y	N	-	-	-	-	-	-	-		
4	Y	N	Y	-	-	-	-	-	-	-		
5	Y	N	Y	-	-	-	Y	Y	Y	-		
ether	net3/	0 Swit	ch+									

Example 2:

ether	net0/	0 Swit	ch+list re	mote-sta	tus						
			Autoneg		A	uto-neg	otiatio	n Adve	rtise		
Port	Lnk	MDIX	complete	1000FD	1000HD	100FD	100HD	10FD	10HD	Pause	Asym
1	Y	N	Y	-	-	Y	Y	Y	Y	Y	-
2	N	-	N	-	-	-	-	-	-	-	-
3	N	-	N	-	-	-	-	-	-	-	-
4	N	-	N	-	-	-	-	-	-	-	-
5	Y	N	Y	Y	-	Y	Y	Y	Y	-	Y
ether	net0/	0 Swit	ch+								

The meaning of the fields is as follows:

Port: Switch port identifier.

Lnk (Link): Link status, established (Y) or not (N).

MDIX: Indicates if the link uses a crossover cable (Y) or not (N).

Autoneg complete: Indicates if auto-negotiation has completed or not.

Auto-negotiation advertise: Where auto-negotiation has completed, this indicates the capacities advertised by the remote end:

- 1000FD: Remote end advertises it supports links at 1Gbp in Full Duplex mode.
- 1000HD: Remote end advertises it supports links at 1Gbp in Half Duplex mode.
- 100FD: Remote end advertises it supports links at 100Mbp in Full Duplex mode.
- 100HD: Remote end advertises it supports links at 100Mbp in Half Duplex mode.
- 10FD: Remote end advertises it supports links at 10Mbp in Full Duplex mode.
- 10HD: Remote end advertises it supports links at 10Mbp in Half Duplex mode.
- Flow Control: Remote end advertises it supports flow control.
- Pause: Remote end advertises it supports symmetric flow control.
- Asym: Remote end advertises it supports asymmetric flow control.

Command history:

Release	Modification
11.01.05	The "Pause" and "Asym" options have been introduced as of version 11.01.05.

8.3.4.10 LIST SNIFFER

Displays information on port monitoring configured through sniffer-port and sniff.

Syntax:

ethernet X/X Switch+list sniffer

Example:

```
ethernet3/0 Switch+list sniffer
Port Sniffer Port Tx Sniff Rx Sniff
```

1	N	N	Y
2	N	N	Y
3	Y	N	N
4	N	Y	N
5	N	N	N
etherne	et3/0 Switc	h+	

The following information is displayed for each port:

Port: Switch port identifier.

Sniffer Port: Indicates whether the port is configured as a listening port or not. Only one port

can be configured as listening.

Tx Sniff: Indicates whether the packets transmitted through a port are reflected in the listen-

ing port or not.

Rx Sniff: Indicates whether the packets received through a port are reflected in the listening

port or not.

8.3.4.11 LIST STATIC-MAC-TABLE

Displays the MAC addresses table statically configured in the switch.

Syntax:

ethernetX/X Switch+list static-mac-table

Example:

```
ethernet1/0 Switch+list static-mac-table

Entry FilterID Use FID Override Forwarding ports MAC Addr

1 0 No Yes 5 01-80-c2-00-00-00

ethernet1/0 Switch+
```

The meaning of the fields is as follows:

Entry identifier in the MAC table.

Entry

FilterID Identifier used to discriminate between the 16 VLANs that can be defined in the

switch.

UseFID Indicates whether or not FilterID should be used when searching for a MAC ad-

dress in the table.

Indicates whether the Spanning Tree state should be ignored in the ports

Override (transmission enabled or not, reception enabled or not) when dealing with this

MAC address.

Forwarding ports Ports to which frames with this destination MAC are sent.

MAC Addr Configured MAC address.

In the previous example, the destination address for the BPDUs used in the Spanning Tree protocol had been configured. Said BPDUs are consequently sent to the internal port, which connects to the CPU (regardless of the ports through which BPDUs are received).

8.3.4.12 LIST STATUS

Displays information on the status of each switch port.

Syntax:

ethernetX/X Switch+list status

Example 1:

3	N	N	N	-	-	Y	Y	Y	Y	Y	Y	Y
4	Y	N	Y	10	Half	Y	Y	Y	Y	Y	Y	Y
5	Y	N	Y	100	Half	Y	Y	Y	Y	Y	Y	Y
eth	ernet3,	/O Swit	ch+									

Example 2:

ethe	rnet0/	0 Swit	ch+list st Autoneg	atus				А	uto-neg	otiatio	n Adve	rtise		
Port	Lnk	MDIX	complete	Speed	Duplex	FC	1000FD	1000HD	100FD	100HD	10FD	10HD	Pause	Asym
1	Y	Y	Y*	1000	Full	N	Y	-	-	_	-	-	Y	-
2	N	-	N	-	-	-	Y	Y	Y	Y	Y	Y	Y	-
3	N	-	N	-	-	-	Y	Y	Y	Y	Y	Y	Y	-
4	N	-	N	-	-	-	Y	Y	Y	Y	Y	Y	Y	-
(*) Port speed has been configured to 1000 Mbps and Auto-Negotiation is mandatory.														
ether	ethernet0/0 Switch+													

The meaning of the fields is as follows:

Switch Status: Switch status, operating or not.

Number of resets: Number of internal switch resets.

Port: Switch port identifier.

Lnk (Link): Link status, established (Y) or not (N).

MDIX:

Autoneg complete:

Indicates whether the switch port is exchanging (Y) the Tx and Rx pairs or not (N).

If the link isn't established, then this value isn't valid.

If the remote end doesn't have an MDI/MDIX feature and the cable is pin to pin, the port exchanges Tx and Rx pairs so a crossover cable is not required.

If the remote end doesn't have the MDI/MDIX feature, then it uses a crossover cable and consequently does not exchange the pairs.

If the remote end has the MDI/MDIX feature (with a crossover cable or not) the

result is undetermined. Either one of the ends can be crossed.

Indicates if the auto-negotiation has completed or not. Whenever auto-negotiation is disabled, this is indicated with a hyphen (' - '). When the speed is forced to 1000Mbps, an '*' appears with the following message below the table "(*) Port speed has been configured to 1000 Mbps and Auto-Negotiation is mandatory." to

indicate that the standard is obeyed.

Speed: Whenever auto-negotiation has completed or is disabled, this option indicates the

link speed in Mbps.

Duplex: Whenever auto-negotiation has completed or is disabled, this option indicates the

link duplex mode.

FC: Whenever auto-negotiation has completed or is disabled, this indicates the flow control mode.

N: no flow control.

- Rx: asymmetric flow control on incoming path. Pause frames are received and dispatched, thus enabling or disabling transmission accordingly. No Pause frames are transmitted.
- Tx: asymmetric flow control on outgoing path. Pause frames are transmitted on congestion. Received Pause frames are ignored.
- Y: symmetric flow control, on both incoming and outgoing paths.

Auto-negotiation advertise: Indicates the capacities advertised by the switch:

- 1000FD: switch advertises it supports links at 1Gbps in Full Duplex mode.
- 1000HD: switch advertises it supports links at 1Gbps in Half Duplex mode.
- 100FD: switch advertises it supports links at 100Mbps in Full Duplex mode.
- 100HD: switch advertises it supports links at 100Mbps in Half Duplex mode.
- 10FD: switch advertises it supports links at 10Mbps in Full Duplex mode.
- 10HD: switch advertises it supports links at 10Mbps in Half Duplex mode.

- Flow Control: switch advertises it supports flow control.
- Pause: switch advertises it supports symmetric flow control.
- · Asym: switch advertises it supports asymmetric flow control.

Command history:

Release Modification

11.01.05 The "FC", "Pause" and "Asym" options have been introduced as of version 11.01.05.

8.3.4.13 LIST STATS

Displays statistics on a switch port.

Syntax:

ethernetX/X Switch+list stats <port identifier>

Example 1:

```
ethernet3/0 Switch+list stats 4
Port: 4
rx lo priority byte ...... 229330857
rx_hi_priority_byte ..... 0
rx_undersize_pkt ..... 0
rx_fragments ..... 0
rx oversize ...... 0
rx jabbers ..... 0
rx_symbol_error ..... 0
rx_crc_error ..... 1
rx alignment error ..... 0
rx control 8808 pkts ..... 0
rx_pause_pkts ..... 0
rx_broadcast ..... 205113
rx multicast ...... 1134065
rx unicast ...... 409052
rx 64 octets ...... 180378
rx_65_to_127_octets ..... 1448751
rx_128_to_255_octets ..... 10724
rx_256_to_511_octets ..... 13615
rx_512_to_1023_octets ..... 4718
rx_1024_to_1522_octets ..... 90348
tx_lo_priority_byte ..... 65313
tx_hi_priority_byte ..... 0
tx_late_collision ..... 0
tx_pause_pkts ..... 0
tx_broadcast ..... 84
tx multicast ..... 569
tx unicast ...... 251
tx deferred ..... 7
tx_total_collision ..... 10261
tx_excessive_collision ..... 629
tx single collision ...... 150
tx_multiple_collision ..... 12
tx_drop_packets ..... 0
rx_drop_packets ..... 0
Info last change ...... 1175
ethernet3/0 Switch+
```

The meaning of the fields is as follows:

rx_lo_priority_byte: Bytes received with low priority, including packets with errors.rx_hi_priority_byte: Bytes received with high priority, including packets with errors.

rx_undersize_pkt: Undersized packets received with correct CRC.

rx_fragments: Fragments received with CRC, alignment or symbol errors.

rx_oversize: Oversized packets received with correct CRC.

rx_jabbers: Oversized packets received with CRC, alignment or symbol errors.

76

rx_symbol_error: Packets received with symbol error and admitted size.

rx_crc_error:Packets received with CRC error.rx_alignment_error:Packets received with alignment error.

rx_control_8808_pkts: Control packets received (EtherType=0x8808).

PAUSE packets received.

rx_pause_pkts:

rx_broadcast:
 correct broadcast packets received.
 rx_multicast:
 correct multicast packets received.
 rx_unicast:
 correct unicast packets received.

rx_64_octets: Total packets received with length equal to 64 octets.

rx_65_to_127_octets:Total packets received with lengths between 65 and 127 octets.rx_128_to_255_octets:Total packets received with lengths between 128 and 255 octets.rx_256_to_511_octets:Total packets received with lengths between 256 and 511 octets.rx_512_to_1023_octets:Total packets received with lengths between 512 and 1023 octets.rx_1024_to_1522_octets:Total packets received with lengths between 1024 and 1522 octets.tx_lo_priority_byte:Bytes transmitted with low priory, including packets with errors.tx_hi_priority_byte:Bytes transmitted with high priory, including packets with errors.

tx_late_collision: Packets transmitted where a collision has been detected after sending 512 bits.

tx_pause_pkts:PAUSE packets transmitted.tx_broadcast:Broadcast packets transmitted.tx_multicast:Multicast packets transmitted.tx unicast:Unicast packets transmitted.

tx_deferred: Packets transmitted after deferring transmission due to the media being busy at

the time of transmission.

tx_total_collision: Total number of detected collisions. Only valid in half duplex mode.

tx_excessive_collision: Packets not transmitted due to excessive collisions.

tx_single_collision:Packets transmitted after a single collision.tx_multiple_collision:Packets transmitted after multiple collisions.tx_drop_packets:Packets not transmitted due to lack of resources.rx_drop_packets:Packets not received due to lack of resources.Info_last_reset:Seconds elapsed since the last switch reset.

Example 2:

ethernet0/0 Switch+list stats 1

Port: 1			
INPUT COUNTERS			
InUnicasts	85632	InBroadcasts	8490
InPause	0	InMulticasts	1922
InFCSErr	0	AlignErr	0
InGoodOctets	78807398	InBadOctets	421
Undersize	0	Fragments	31
In64Octets	32794	In1270ctets	4790
In255Octets	580	In5110ctets	410
In1023Octets	11720	InMaxOctets	45750
Jabber	0	Oversize	0
InDiscards	0	Filtered	73468
OUTPUT COUNTERS			
OutUnicasts	2	OutBroadcasts	0
OutPause	0	OutMulticasts	0
OutFCSErr	0	OutGoodOctets	174
Out64Octets	1	Out127Octets	1
Out255Octets	0	Out511Octets	0
Out1023Octets	0	OutMaxOctets	0
Collisions	0	Late	0
Excessive	0	Multiple	0
Single	0	Deferred	0
OutFiltered	0		
ethernet0/0 Switch+	+		

The meaning of the fields is as follows:

 InUnicasts:
 Unicast packets received.

 InBroadcasts:
 Broadcast packets received.

 InPause:
 Pause packets received.

 InMulticasts:
 Multicast packets received.

 InFCSErr:
 Packets received with CRC error.

AlignErr: Packets received with alignment errors.

InGoodOctets:Bytes received without errors.InBadOctets:Bytes received with errors.

Undersize: Undersized packets received with correct CRC.

Fragments: Fragments received with CRC, alignment or symbol errors.

In64Octets: Total packets received with a length equal to 64 octets.

In127Octets:Total packets received with lengths between 65 and 127 octets.In255Octets:Total packets received with lengths between 128 and 255 octets.In511Octets:Total packets received with lengths between 256 and 511 octets.In1023Octets:Total packets received with lengths between 512 and 1023 octets.

InMaxOctets: Total packets received with lengths between 1024 octets and the maximum per-

mitted frame.

Jabber: Oversized packets with CRC, alignment or symbol errors.

Oversize: Oversized packets received with correct CRC.

InDiscards: Packets discarded due to lack of resources at the switch.

Filtered: If VLAN is not enabled in the port, this indicates the number of packets received

that were not forwarded to another port. If VLAN is enabled in the port, this indicates the number of packets that have been dropped due to an unknown VLAN

identifier.

 OutUnicasts:
 Unicast packets transmitted.

 OutBroadcasts:
 Broadcast packets transmitted.

 OutPause:
 Pause packets transmitted.

 OutMulticasts:
 Multicast packets transmitted.

OutFCSErr: Packets transmitted with CRC error.

OutGoodOctets: Bytes transmitted.

Out64Octets: Packets transmitted with a 64 byte length.

Out127Octets:Packets transmitted with a length between 65 and 127 bytes.Out255Octets:Packets transmitted with a length between 128 and 255 bytes.Out511Octets:Packets transmitted with a length between 256 and 511 bytes.Out1023Octets:Packets transmitted with a length between 512 and 1023 bytes.OutMaxOctets:Packets transmitted with a length between 1024 and 1522 bytes.Collisions:Total number of detected collisions. Only logical in half duplex mode.

Late: Number of late detected collisions.

Excessive: Packets not transmitted due to excessive collisions.

Multiple:Packets transmitted after multiple collisions.Single:Packets transmitted after a single collision.

Deferred: Packets transmitted after deferring transmission due to the media being busy at

the time of transmission.

OutFiltered: Packets filtered at the output.

Note

Some devices do not support an atomic reading of all counters. If any counters are updated during the reading, an asterisk is shown next to the value of the counter to warn about possible inaccuracies.

8.3.4.14 LIST STATS CPU-PORT

Displays the statistics for the switch port connected to the CPU.

Syntax:

ethernetX/X Switch+list stats cpu-port

Example 1:

ethernet0/2 Switch+list	t stats	cpu-port	
Port: CPU			
InGoodOctetsHi	0	InGoodOctetsLo	0
InBadOctets	0	OutFCSErr	0
InUnicasts	0	Deferred	0
InBroadcasts	0	InMulticasts	0
640ctets	297	1270ctets	629
2550ctets	66	5110ctets	17
10230ctets	8746	MaxOctets	0
OutOctetsHi	0	OutOctetsLo	4962585
OutUnicasts	9184	Excessive	0
OutMulticasts	62	OutBroadcasts	509
Single	0	OutPause	0
InPause	0	Multiple	0
Undersize	0	Fragments	0
Oversize	0	Jabber	0
InMACRovErr	0	InFCSErr	0
Collisions	0	Late	0

The values listed have the same meaning as those displayed through list stats.

8.3.4.15 LIST STATS CONNECTION-PORTS

Displays the statistics for the ports that interconnect with the different chips that make up the switch. This only appears when the switch has more than 8 ports.

Syntax:

ethernetX/X Switch+list stats connection-ports

Example 1:

ethernet0/2 Switch+l:	ist stats	connection-ports					
Port: Nxt1	Port: Nxt1						
InGoodOctetsHi	0	InGoodOctetsLo	0				
InBadOctets	0	OutFCSErr	0				
InUnicasts	0	Deferred	0				
InBroadcasts	0	InMulticasts	0				
640ctets	2181	1270ctets	2239				
255Octets	487	5110ctets	107				
1023Octets	20058	MaxOctets	0				
OutOctetsHi	0	OutOctetsLo	11626563				
OutUnicasts	21048	Excessive	0				
OutMulticasts	455	OutBroadcasts	3569				
Single	0	OutPause	0				
InPause	0	Multiple	0				
Undersize	0	Fragments	0				
Oversize	0	Jabber	0				
InMACRovErr	0	InFCSErr	0				
Collisions	0	Late	0				
Port: Prv2							
InGoodOctetsHi	0	InGoodOctetsLo	11627084				
InBadOctets	0	OutFCSErr	0				
InUnicasts	21048	Deferred	0				
InBroadcasts	3573	InMulticasts	455				
640ctets	2181	1270ctets	2242				
2550ctets	488	5110ctets	107				
10230ctets	20058	MaxOctets	0				
OutOctetsHi	0	OutOctetsLo	0				
OutUnicasts	0	Excessive	0				
OutUnicasts	U	Excessive	0				

OutMulticasts	0	OutBroadcasts	0
Single	0	OutPause	0
InPause	0	Multiple	0
Undersize	0	Fragments	0
Oversize	0	Jabber	0
InMACRovErr	0	InFCSErr	0
Collisions	0	Late	0

The values listed have the same meaning as those displayed through list stats.

The first group represents the statistics for chip controlling ports 1-8. The second refers to ports 9-16.

¬ Note

Some devices do not support an atomic reading of all counters. If any counters are updated during the reading, an asterisk is shown next to the value of the counter to warn about possible inaccuracies.

8.3.4.16 LIST STORM-CONTROL

Displays the traffic storm control configuration. The value of the bandwidth displayed is the real value used in the switch. In some cases, due to hardware limitations, this value can be different to the one configured.

Syntax:

ethernetX/X Switch+list storm-control

Example 1:

ethernet()/0 Switch+list	storm-contro
Port	Packets	Level
1	Bcst	0 Kbps
2	Bcst	32000 Kbps
3	All	0 Kbps
4	All	0 Kbps
5	All	0 Kbps
6	All	0 Kbps
7	All	0 Kbps
8	All	0 Kbps
9	All	0 Kbps
10	All	0 Kbps
11	All	0 Kbps
12	All	0 Kbps
13	All	0 Kbps
14	All	0 Kbps
15	All	0 Kbps
16	All	0 Kbps
ethernet	0/0 Switch+	

Example 2:

ethernet	ethernet2/0 Switch+list storm-control			
Port	Packets	Level		
1	Disabled	0.00%		
2	Disabled	0.00%		
3	Disabled	0.00%		
4	Disabled	0.00%		
ethernet	ethernet2/0 Switch+			

8.3.4.17 LIST STP

Displays information from the Spanning Tree protocol.

Syntax:

counters Lists counters related to the Spanning Tree protocol
state Lists the state of the Spanning Tree protocol
tree Lists current information about the Spanning Tree protocol
detail Lists detailed information about operation of the Spanning
Tree protocol

8.3.4.18 LIST STP CONFIGURATION

Displays information on the Spanning Tree protocol.

Example:

ethernet0/0 Switch+list stp 1 configuration

Bridge ID (prio/add): 28672/00-a0-26-44-03-38

Vlan: 100

Maximum age: 20.000 seconds

Hello time: 2.000 seconds

Forward delay: 15.000 seconds

Transmit Hold Count: 6

Migrate Time: 3 seconds

Port Interface Priority Cost State

1 ethernet0/0 128 200000 Enabled

2 ethernet0/0 Switch+

Bridge ID (prio/add) Bridge identifier. Bridge priority and MAC address are displayed.

VlanID Parameter value for the bridge Vlan ID if PVST is configured for this instance.

Maximum age Parameter value for the maximum age used by the Spanning Tree protocol. This

indicates the maximum time the information received in a BPDU is valid.

Hello Time Parameter value for the Hello Time used by the Spanning Tree protocol. Indicates

how often the Hello BPDUs are sent.

Forward Delay Parameter value for the Forward Delay used by the Spanning Tree protocol. Indic-

ates the wait time in the *Learning* state before passing to a *Forwarding* state.

Transmit Hold Count Parameter value for the Transmit Hold Count used by the Spanning Tree protocol.

Indicates the maximum number of BPDUs that can be sent by a port in one

second.

Migrate Time Parameter value for the Migrate Time used by the Spanning Tree protocol. This

parameter is used to initiate the counters that control whether Rapid Spanning Tree BPDUs or Spanning Tree should be used, and if a port can be considered as

a port directly connected to a station (edge-port).

Port Port identifier.

Interface Interface associated to the port.

Priority Port priority.

Cost associated to the port in the Spanning Tree.

State Port state: active or not.

8.3.4.19 LIST STP COUNTERS

Displays the counters associated to the Spanning Tree protocol.

Example:

```
ethernet0/0 Switch+list stp 1 counters
BPDUs received:
                                             0
       Dropped:
                                             0
       Errs:
       Config:
                                             0
       TCN:
                                             0
       RST:
                                             0
BPDUs sent:
                                             30
       Dropped:
                                             0
       Errs:
                                             Ω
       Config:
                                             Ω
       TCN:
                                             0
```

AN Interfaces 8⁻

	RST:		30)			
Port	Interface	BPDUs rcv					
			_	Err		Conf	
1	ethernet0/0	0	0	0	0	0	0
2	ethernet0/0	0	0	0	0	0	0
Port	Interface		BPI	OUs xmt			
		Total	Err	TCN		Conf	RST
1	ethernet0/0	15	0	0		0	15
2	ethernet0/0	15	0	0		0	15
Port	Interface	Forward trans	itions				
1	ethernet0/0	1					
2	ethernet0/0	1					
ether	net0/0 Switch+						

BPDUs received Number of protocol frames received. The total number of BPDUs is displayed,

both globally and per interface. In addition, a breakdown of these is shown: BP-DUs dropped (*Dropped*), received with errors (*Errs*), configuration BPDUs (*Config*), topology change notification BPDUs (*TCN*) and the Rapid Spanning Tree

protocol BPDUs (RST).

BPDUs sent Number of protocol frames sent. The total number of BPDUs is displayed, both

globally and per interface. In addition, a breakdown of these is shown: BPDUs transmitted with errors (*Errs*), configuration BPDUs (*Config*), topology change notification BPDUs (*TCN*) and the Rapid Spanning Tree protocol BPDUs (*RST*).

Forward transitions Number of times the port has switched to a Forwarding state.

8.3.4.20 LIST STP DETAIL

Displays detailed information on the Spanning Tree protocol function. This command displays the state of all internal variables used while the Spanning Tree protocol is running.

Syntax:

```
ethernet0/0 Switch+list stp 1 detail ?

bridge Lists information about Spanning Tree protocol related to the bridge

port Lists information about Spanning Tree protocol related to a specific port

all Lists all the information about the Spanning Tree protocol
```

bridge Displays information on the Spanning Tree that is globally relevant for the bridge

(Spanning Tree instance).

port Displays information on the Spanning Tree relative to a specific port.

all Displays all information on the Spanning Tree.

Example:

```
RootPathCost ..... 0
    DesignatedBridgeId ..... 32768/00-a0-26-44-03-38
    DesignatedPortID ..... 0 (0/0)
    BridgePortID ..... 0 (0/0)
Root times:
    Message Age ..... 0.000
    Max Age ..... 20.000
    Hello Time ..... 2.000
    Forward Delay ..... 15.000
State Machines:
    Bridge role selection ... ROLE_SELECTION
more ? y
         Port Parameters
         -----
Port 1
    Port priority ...... 128
    MAC Operational ..... Yes
    Administrative state ..... Enabled
    {\tt AuthControlledPortStatus} \ \dots \dots \ {\tt Authorized}
    Operational Point To Point MAC .... Not Point To Point
    Admin Point To Point MAC ..... Auto
    Port enabled ..... Yes
    BPDU filtering ..... enabled
    BPDU guard ..... disabled (by default)
    Port path cost ...... 2000000
    Oper Edge ..... Non Edge
    Rcv BPDU ..... No
    RCV RSTP ..... No
    Rcv STP ..... Yes
    Rcv msg ..... No
    Send RSTP ..... No
    Rcv info ..... No
    mcheck ..... No
    newInfo ..... No
    Tx Count ..... 0
    role ..... Designated
    selectedRole ..... Designated
    infoIs ..... Mine
    learn ..... Yes
    learning ..... Yes
    forward ..... Yes
    forwarding ..... Yes
    sync ..... No
    synced ..... No
    proposing ...... No
    proposed ...... No
    agree ..... No
    agreed ..... No
    disputed ..... No
    reselect ..... No
    selected ..... Yes
    updtInfo ..... No
    reRoot ..... No
    fdbFlush ..... No
    tcAck ..... No
    rcvdTc ..... No
    rcvdTcn ..... No
    rcvdTcAck ..... No
    tcProp ...... No
    AdminEdge ..... No
    AutoEdge ..... No
    Ageing Time ..... 320
    rapid Ageing ..... No
    Port priority vector:
         RootBridgeID ..... 32768/00-a0-26-44-03-38
         RootPathCost ..... 0
```

```
DesignatedBridgeId ...... 32768/00-a0-26-44-03-38
            DesignatedPortID ...... 32769 (128/1)
            BridgePortID ..... 32769 (128/1)
      Port times:
            Message Age ..... 0.000
            Max Age ..... 20.000
            Hello Time ..... 2.000
            Forward Delay ..... 15.000
      Designated priority vector:
            RootBridgeID ..... 32768/00-a0-26-44-03-38
            RootPathCost ..... 0
            DesignatedBridgeId ...... 32768/00-a0-26-44-03-38
            DesignatedPortID ...... 32769 (128/1)
            BridgePortID ..... 0 (0/0)
      Designated times:
            Message Age ..... 0.000
            Max Age ..... 20.000
            Hello Time ..... 2.000
            Forward Delay ..... 15.000
      Message priority vector:
            RootBridgeID ..... 32768/00-17-0e-82-e6-c2
            RootPathCost ..... 0
            DesignatedBridgeId ...... 32768/00-17-0e-82-e6-c2
            DesignatedPortID ...... 32769 (128/1)
            BridgePortID ..... 32769 (128/1)
      Message times:
            Message Age ..... 0.000
            Max Age ..... 20.000
            Hello Time ..... 2.000
            Forward Delay ..... 15.000
      Timers:
            edgeDelayWhile ..... 0
            fdWhile ..... 0
            helloWhen ..... 1
            mdelayWhile ..... 0
            rbWhile ..... 0
            rcvdInfoWhile ..... 0
            rrWhile ..... 0
            tcWhile ..... 0
      Machine State Status:
            Receive State Machine ..... RECEIVE
            Receive State Machine ..... RECEIVE
            Transmit State Machine ..... IDLE
            Protocol Migration State Machine ... SENSING
            Bridge Detection State Machine .... NOT_EDGE
            Port Information State Machine .... CURRENT
            Role Transitions State Machine .... DESIGNATED PORT
            State Transition State Machine .... FORWARDING
            Topology Change State Machine ..... ACTIVE
more ? n
ethernet0/0 Switch+
```

8.3.4.21 LIST STP STATE

Displays information on the current state of the Spanning Tree protocol.

Example:

```
ethernet0/0 Switch+list stp 1 state

Designated root (prio/add): 32768/00-a0-26-44-03-38

Vlan: 100

Root cost: 0

Root port: 1 (ethernet0/0)

Current (root) Maximum Age: 20.000 seconds

Current (root) Hello Time: 2.000 seconds

Current (root) Forward Delay: 15.000 seconds
```

Port	Interface	State	Role			
1	ethernet0/0	Forwarding	Designated			
2	ethernet0/0	Forwarding	Designated			
ethe	ethernet0/0 Switch+					

Designated root Identifier for the bridge selected as root bridge by the Spanning Tree protocol.

VlanID Vlan ID for the bridge if PVST is used for this instance.

Root cost Cost associated to the path to the root bridge.

Root port Identifier for the port selected as root port in this bridge. When the bridge has been

selected as root bridge, Self is displayed to indicate there is no root port.

Current maximum ageValue of the Max Age parameter shown by the root bridge.Current hello timeValue of the Hello Time parameter shown by the root bridge.Current Forward DelayValue of the Forward Delay parameter shown by the root bridge.

Port Port identifier.

Interface Interface associated to the port.

State State State of the port when it comes to the Spanning Tree protocol: Discarding, if it

drops received packets; *Learning*, if it doesn't process the received packets but does use them to learn MAC addresses; *Forwarding*, if it processes the received

packets; and *Undefined*, if it doesn't do any of the previous actions.

Role Role the port plays in the Spanning Tree protocol. It can be *Disabled*, when the

port is disabled, Designated, for a designated port, Root, for a root port, Alternate,

for an alternate port, Backup, for a backup port.

8.3.4.22 LIST STP TREE

Displays the current information on the Spanning Tree, including information on the port, the interface and the cost.

Example:

ethernet0/0 Switch+list stp 1 tree

Port Designated Desig. Designated Des.

N. Interface Root Cost Bridge Port

1 ethernet0/0 32768/00-a0-26-40-0c-e4 0 32768/00-a0-26-40-0c-e4 80-01

2 ethernet0/0 Switch+

Port Port identifier.

Interface Interface associated to the port.

Designated root Designated root bridge identifier for the LAN to which the port is connected.

Designated cost Cost associated to the path to the root bridge for the LAN to which the port is con-

nected.

Designated Bridge Designated bridge identifier for the LAN to which the port is connected.

Designated Port Designated port identifier for the LAN to which the port is connected.

8.3.4.23 LIST VLAN-TABLE

Displays the VLAN table.

Syntax:

ethernetX/X Switch+list vlan-table

Example 1:

ethernet3/0 Switch+list vlan-table			
Entry	Membership	FilterID	VlanID
1	0x1F	0	1
2	0x1F	0	1
3	0x1F	0	1
4	0x1F	0	1
5	0x1F	0	1
6	0x1F	0	1
7	0x1F	0	1
8	0x1F	0	1

9	0x1F	0	1		
10	0x1F	0	1		
11	0x1F	0	1		
12	0x1F	0	1		
13	0x1F	0	1		
14	0x1F	0	1		
15	0x1F	0	1		
16	0x1F	0	1		
etherne	ethernet3/0 Switch+				

The meaning of the fields is as follows:

Entry: Entry identifier in the MAC table.

Membership: Bits map indicating what ports are associated to the VLAN.

Filter ID: Identifier used to discriminate between the 16 VLANs. It can be defined in the

switch.

VLAN ID: VLAN identifier.

Example 2:

```
ethernet0/0 Switch+list vlan-table

VID: 1 SID: 5 Members: Internal, 1, 2, 3, 4,

VID: 20 SID: 2 Members: Internal, 2, 4,

VID: 21 SID: 3 Members: Internal, 2, 4,

VID: 30 SID: 4 Members: Internal, 2, 4,

ethernet0/0 Switch+
```

The VLANs, configured in the switch, are displayed together with information on the ports.

8.3.5 NO

Resets parameters that had been previously configured.

Syntax:

```
ethernetX/X Switch+no ?
sniff Sniffed port
sniffer-port Sniffer port
ethernetX/X Switch+
```

8.3.5.1 NO SNIFFER-PORT

Disables the monitoring functionality for the ports enabled through sniffer-port.

Syntax:

```
ethernetX/X Switch+no sniffer-port
```

Example:

```
ethernet3/0 Switch+no sniffer-port
ethernet3/0 Switch+
```

8.3.5.2 NO SNIFF

Disables, in a switch port, the reflection of packets received or transmitted in the port configured as the listening port.

Syntax:

```
ethernetX/X Switch+no sniff <option> <port identifier>
   receive    Reception
   transmit   Transmission
ethernetX/X Switch+
```

To stop packets received by a port from being mirrored in the listening port, enter no sniff receive.

To stop packets transmitted by a port from being mirrored in the listening port, enter no sniff transmit.

Example:

Removes port 2 transmission and reception monitoring.

```
ethernet3/0 Switch+no sniff receive 2
ethernet3/0 Switch+no sniff transmit 2
ethernet3/0 Switch+
```

8.3.6 PORT-MONITOR

Configures monitoring for a switch port.

Syntax:

```
ethernetX/X Switch+port-monitor ?
  disable    Disable port monitor
  enable    Enable port monitor
ethernetX/X Switch+
```

8.3.6.1 PORT-MONITOR DISABLE

Disables the monitoring function for ports enabled with **port-monitor enable**. This command disables monitoring in all switch ports.

Syntax:

```
ethernetX/X Switch+port-monitor disable
```

Example:

```
ethernet0/0 Switch+port-monitor disable
Port Monitoring disabled on all ports
ethernet0/0 Switch+
```

8.3.6.2 PORT-MONITOR ENABLE

Configures the ports monitoring function. You need to specify a monitored port and a monitoring port so that everything the monitored port sends and receives is reflected in the monitoring port.

Syntax:

```
ethernetX/X Switch+port-monitor enable <monitored port><monitoring port>
```

Example:

The switch is configured so that the traffic from the internal port (port 0) is reflected in port 5.

```
ethernet0/0 Switch+port-monitor enable 0 5
Port Monitoring enabled
ethernet0/0 Switch+
```

8.3.7 **SNIFF**

Configures the type of packet for a port that must be reflected in the listening port. The listening port is configured by entering **sniffer-port**.

Syntax:

```
ethernetX/X Switch+sniff <option> <port identifier>
receive Reception
transmit Transmission
ethernetX/X Switch+
```

To enable the reflection of packets received by a port in the listening port, enter sniff receive.

To enable the reflection of packets transmitted by a port in the listening port, enter sniff transmit.

Example:

You want to monitor the traffic port 3 sends and receives. To do this, use port 2 as the listening port.

```
ethernet3/0 Switch+sniffer-port 2
```

8.3.8 SNIFFER-PORT

Configures a port as a listening port. Through **sniff**, indicate what type of packets you wish to reflect in the port configured as the listening port. This can prove useful to analyze traffic leaving through a certain port.

Syntax:

```
ethernetX/X Switch+sniffer-port <port identifier>
```

Example:

You want to monitor traffic sent and received through port 2 and traffic sent through port 4. To do so, use port 1 as the listening port.

8.3.9 SPANNING TREE

Options associated to the Spanning Tree protocol.

Syntax:

```
ethernet0/0 Switch+spanning-tree
force-bpdu-migration-check Forces BPDU migration check
```

8.3.9.1 SPANNING-TREE FORCE-BPDU-MIGRATION-CHECK

Forces RSTP BPUD frames to be sent in the port specified during the migration time. Consequently, a check is carried out to make sure there are no STP bridges in the LAN and that RSTP BPDU frames can be sent through said port.

Syntax:

```
ethernet0/0 Switch+spanning-tree force-bpdu-migration-check <port-number>
```

Example:

```
ASRT Main Bridge+spanning-tree force-bpdu-migration-check 1
```

8.3.10 EXIT

Exits the switch monitoring menu.

Syntax:

ethernetX/X Switch+exit

bintec elmeg 8 Switch Monitoring

Example:

ethernet3/0 Switch+exit ethernet3/0 ETH+

Chapter 9 Ethernet OAM Configuration

9.1 Introduction

Ethernet OAM (Operations, Administration and Maintenance, IEEE 802.3 ah EFM) is a layer 2 protocol (designed as a sublayer in the link layer, in accordance with the OSI model) that provides performance monitoring, remote failure indication and loopback testing in an Ethernet link. It is meant to operate in full-duplex point-to-point Ethernet links in EFM (Ethernet in the First Mile) environments.

9.1.1 Ethernet OAM: Main operating points

The Ethernet OAM protocol doesn't generate a significant traffic load in Ethernet interfaces, as it requires little bandwidth to operate (it's known as a slow protocol).

The protocol starts with a discovery phase where a local station transmits OAM information packets (OAMPDUs), describing the functionalities and the configuration of the local OAMs. At the same time, it detects the presence of a remote OAM station by receiving OAMPDUs from the other end of the link. This phase provides the opportunity for both stations to accept or reject the OAM configuration available at the remote station.

Amongst the information exchanged during the discovery phase, the following is worth noting:

- · Operating mode: active or passive.
- Available operations: link and remote loopback monitoring, etc.
- Maximum size allowed for an OAMPDU.
- · Platform identification.

Once the OAM session is established, both stations must send information OAMPDUs to maintain the session. If OAMPDUs are not received after a certain time, an OAM station restarts the OAM session and returns to the discovery phase.

An OAM station can operate in two modes: active and passive. Only an active station can start the discovery phase by sending an information OAMPDU. Therefore, a station configured as passive must wait to receive an information OAMPDU to start transmitting OAMPDUs with local information. An OAM session is also possible with both link stations in active mode.

An OAM station in passive mode must fulfill certain rules. The following should be noted:

- It must wait for the remote station to start the discovery phase (as already commented).
- · Control commands in loopback mode cannot be sent from the remote station.
- It cannot send MIB variable petitions.

One of the main points of Ethernet OAM is *link monitoring*. This feature is implemented through the sending of event notification OAMPDUs, which contain information on the traffic-related error statistics received in the interface. These statistics often contain the received frame and symbol errors. Likewise, there are flags reserved in an OAMPDU used to advise the remote station on critical events in the link. The definition of the events activating these flags is not specified in the IEEE norm and falls under the implementer's responsibility.

To round off, we are going to describe the Ethernet OAM loopback operation. An OAM station, configured in active mode, can send an order to the remote station to set it in loopback mode (provided said station allows this operation). Loopback control commands are transmitted through a specific type of OAMPDUs. When an OAM station is in loopback mode, any packet received by the interface that is not OAMPDU is returned unaltered. Loopback was developed to be used when installing a link or to resolve problems in the link.

9.2 Accessing the Ethernet OAM Configuration menu

Accesses OAM configuration from an Ethernet interface through the **oam** command. The configuration can be activated from both the *Config* process (static configuration, active after restarting the device) and the *running-config* process (dynamic configuration).

Example:

*config
Config>network ethernet0/1
-- Ethernet Interface User Configuration -ethernet0/1 config>oam

```
-- Ethernet OAM interface configuration -- ethernet0/1 OAM config>
```

9.3 Ethernet OAM Configuration Commands

This section enumerates and describes the various OAM feature configuration commands.

Command	Function
? (HELP)	Displays the available commands and their options.
LINK-MONITOR	Configures parameters relative to the link events notification.
NO	Deletes previously configured parameters.
OAM	Configures global parameters for the Ethernet OAM.
REMOTE-FAILURE	Configures the actions to be taken whenever critical events occur.
REMOTE-LOOPBACK	Configures parameters associated to the test loopback.
EXIT	Exits the Ethernet OAM configuration menu.

9.3.1 ? (HELP)

Displays all the available commands and their options.

Syntax:

```
ethernet0/1 OAM config>?
```

Example:

9.3.2 LINK-MONITOR

Enables link events monitoring (statistics for errors in traffic received in the interface), in addition to configuring various parameters that control the operating mode of said functionality. The following options (among others) are available:

```
ethernet0/1 OAM config>link-monitor ?

crc-errors CRC error configuration
enable Enable Link Monitoring functionality
frame Frame TLV configuration
frame-period Frame-period TLV configuration
frame-seconds Frame-seconds TLV configuration
high-threshold-action Set high-threshold action
symbol-period Symbol-period TLV configuration
```

Subsequent sections describe the configurable parameters.

9.3.2.1 LINK-MONITOR CRC-ERRORS

Configures the time window, and the high and low thresholds, used while monitoring CRC errors when frames are received through the corresponding Ethernet interface. Thresholds are specified in number of frames and the time window in multiples of 100 ms.

The time window specifies the time interval where CRC errors produced at reception are counted. If the number of CRC errors in said interval exceeds the low threshold configured, a trace is displayed on the console to indicate the event. When the high threshold is surpassed, and if an action has been configured through **high-threshold-action**, said action is executed.

Syntax:

```
ethernet0/1 OAM config>link-monitor crc-errors ?
high-threshold Set high-threshold value
```

```
low-threshold Set low-threshold value
window Set window value
ethernet0/1 OAM config>link-monitor crc-errors high-threshold ?
<1..900> Set high-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor crc-errors low-threshold ?
<1..900> Set low-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor crc-errors window ?
<10..1800> Set window value (multiples of 100ms)
```

Example:

```
ethernet0/1 OAM config>link-monitor crc-errors window 200 ethernet0/1 OAM config>
```

9.3.2.2 LINK-MONITOR ENABLE

Enables the OAM functionality to monitor the link events. When an OAM session is established (i.e., the discovery phase ends), some of the reception error statistics in the Ethernet interface are periodically monitored. Examples of error statistics are: the number of erroneous symbols, the number of alignment errors or the number of CRC errors. If some of the configured thresholds are surpassed, event notification OAMPDU packets are sent to the remote OAM client. This functionality is enabled by default.

Syntax:

```
ethernet0/1 OAM config>link-monitor enable ?
<cr>
```

Example:

```
ethernet0/1 OAM config>link-monitor enable
ethernet0/1 OAM config>
```

9.3.2.3 LINK-MONITOR FRAME

Configures the time window, and the high and low thresholds, used to monitor frame errors when these are received through the corresponding Ethernet interface. The time window is specified in multiples of 100 ms and the thresholds in number of frames.

The time window specifies the time interval where the frame errors produced at reception are counted. If the number of errors surpasses the low threshold configured, a link event notification OAMPDU packet is sent together with a *frame-period event* TLV. If an action has been configured through **high-threshold-action** and the high threshold is surpassed, said action is executed.

Syntax:

```
ethernet0/1 OAM config>link-monitor frame ?
high-threshold Set high-threshold value
low-threshold Set low-threshold value
window Set window value
ethernet0/1 OAM config>link-monitor frame high-threshold ?
<1..65535> Set high-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor frame low-threshold ?
<1..65535> Set low-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor frame window ?
<10..600> Set window value (multiples of 100ms)
```

Example:

```
ethernet0/1 OAM config>link-monitor frame high-threshold 5
ethernet0/1 OAM config>
```

9.3.2.4 LINK-MONITOR FRAME-PERIOD

Configures the time window, and the high and low thresholds, used to monitor frame errors received through the corresponding Ethernet interface. The time window is specified in multiples of 10000 frames (internally, this is translated from a number of frames to time units, depending on the interface's active speed) and the thresholds in number of frames.

The time window specifies the time interval where the frame errors produced at reception are counted. If the number of errors exceeds the low threshold configured, a link event notification OAMPDU packet is sent, together with a *frame-period event* TLV. If an action has been configured through **high-threshold-action** and the high threshold is

surpassed, said action is executed.

Syntax:

```
ethernet0/1 OAM config>link-monitor frame-period ?
high-threshold Set high-threshold value
low-threshold Set low-threshold value
window Set window value
ethernet0/1 OAM config>link-monitor frame-period high-threshold ?
<1..65535> Set high-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor frame-period low-threshold ?
<1..65535> Set low-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor frame-period window ?
<2000..65535> Set window value (multiples of 10000 frames)
```

Example:

```
ethernet0/1 OAM config>link-monitor frame-period window 5000
ethernet0/1 OAM config>
```

9.3.2.5 LINK-MONITOR FRAME-SECONDS

Configures the time window and the high and low thresholds used to monitor frame errors received through the corresponding Ethernet interface. Both the time window and the high and low thresholds are specified in seconds.

The time window specifies the time interval where the second errors produced at reception are counted. A second error is a period of time (1 sec.) during which at least one frame error has been received through the Ethernet interface. If the number of second errors surpasses the low threshold configured, a link event notification OAMPDU packet is sent including a *frame-seconds event* TLV. If an action has been configured through **high-threshold-action** and the high threshold is surpassed, said action is executed.

Syntax:

```
ethernet0/1 OAM config>link-monitor frame-seconds ?
high-threshold Set high-threshold value
low-threshold Set low-threshold value
window Set window value
ethernet0/1 OAM config>link-monitor frame-seconds high-threshold ?
<1..900> Set high-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor frame-seconds low-threshold ?
<1..900> Set low-threshold value (number of frames)
ethernet0/1 OAM config>link-monitor frame-seconds window ?
<100..9000> Set window value (multiples of 100ms)
```

Example:

```
ethernet0/1 OAM config>link-monitor frame-seconds window 500 ethernet0/1 OAM config>
```

9.3.2.6 LINK-MONITOR HIGH-THRESHOLD-ACTION

Configures what action to execute if a link monitoring statistic exceeds the high threshold established during a time window. Currently, it's only possible to configure one action: disable the interface. No action is configured by default.

Syntax:

```
ethernet0/1 OAM config>link-monitor high-threshold-action ?
shutdown Disable the interface on event
```

Example:

```
ethernet0/1 OAM config>link-monitor high-threshold-action shutdown
ethernet0/1 OAM config>
```

9.3.2.7 LINK-MONITOR SYMBOL-PERIOD

Configures the time window and the high and low thresholds used to monitor symbol errors when frames are received through the interface. The time window is specified in multiples of millions of symbols and the thresholds in number of symbols.

The time window specifies the time interval (internally this is translated from number of symbols to time units, depending on the interface's active speed) where the symbol errors generated at reception are counted. If the number

of errors exceeds the low threshold configured, a link event notification OAMPDU packet is sent together with a *symbol-period event* TLV. If an action has been configured through **high-threshold-action** and the high threshold is surpassed, said action is executed.

Syntax:

```
ethernet0/1 OAM config>link-monitor symbol-period ?
high-threshold Set high-threshold value
low-threshold Set low-threshold value
window Set window value
ethernet0/1 OAM config>link-monitor symbol-period high-threshold ?
high-threshold Set high-threshold value (number of symbols)
ethernet0/1 OAM config>link-monitor symbol-period low-threshold ?
<1..65535> Set low-threshold value (number of symbols)
ethernet0/1 OAM config>link-monitor symbol-period window ?
<500..65535> Set window value (millions of symbols)
```

Example:

```
ethernet0/1 OAM config>link-monitor symbol-period low-threshold 10 ethernet0/1 OAM config>
```

9.3.3 NO

Recovers default values for each of the configurable OAM parameters and disables certain functions (OAM protocol, loopback mode, link monitoring, etc.).

Syntax:

Example:

```
ethernet0/1 OAM config>no link-monitor enable ethernet0/1 OAM config>
```

9.3.4 OAM

Enables the OAM functionality and configures various global parameters that control protocol operation. The following parameters are available (amongst others):

Syntax:

Subsequent sections describe each of the configurable parameters.

9.3.4.1 OAM ENABLE

Enables the OAM functionality in the Ethernet interface that is being configured. Default is disabled.

Syntax:

```
ethernet0/1 OAM config>oam enable ?
<cr>
```

Example:

```
ethernetO/1 OAM config>oam enable
ethernetO/1 OAM config>
```

9.3.4.2 OAM MAX-RATE

Configures the maximum rate of OAMPDUs transmitted per time unit (packets/s). Default is 10 packets/s.

Syntax:

```
ethernet0/1 OAM config>oam max-rate ?
<1..10> Set the maximum rate for OAMPDUs transmitted
```

Example:

```
ethernet0/1 OAM config>oam max-rate 4
ethernet0/1 OAM config>
```

9.3.4.3 OAM MIN-RATE

Configures the minimum rate of OAMPDUs transmitted per second, specifying the maximum time between transmitted OAMPDUs. Default is 1 second.

Syntax:

```
ethernet0/1 OAM config>oam min-rate ?
<1..10> Set the minimum rate for OAMPDUs transmitted
```

Example:

```
ethernet0/1 OAM config>oam min-rate 2
ethernet0/1 OAM config>
```

9.3.4.4 OAM MODE

Configures the operating mode of the local OAM client. There are two possibilities: active client or passive client. Please see the section that describes the Ethernet OAM protocol for further details on the characteristics of the two possible operating modes. Default is active mode.

Syntax:

```
ethernet0/1 OAM config>oam mode ?

active Set active mode

passive Set passive mode
```

Example:

```
ethernet0/1 OAM config>oam mode passive
ethernet0/1 OAM config>
```

9.3.4.5 OAM TIMEOUT

Configures the maximum wait time without receiving link maintenance OAMPDUs from the remote OAM client. Once this has timed out, the OAM session restarts and returns to the discovery stage. Default is 10 seconds.

Syntax:

```
ethernet0/1 OAM config>oam timeout ?
<2..30> Timeout value (seconds)
```

Example:

```
ethernet0/1 OAM config>oam timeout 15
ethernet0/1 OAM config>
```

9.3.5 REMOTE-FAILURE

Configures the actions to be executed on receiving OAMPDU packets from the remote OAM client where some of the flags reserved for critical events are activated. You can specify an action to be taken for each of the three possible critical events: link-fault, critical-event and dying-gasp. Currently, only one action is available: disable the interface. No action is specified by default in any of the three cases.

Syntax:

```
ethernet0/1 OAM config>remote-failure ?

critical-event Set action on received critical-event from remote OAM client
```

Example:

```
ethernet0/1 OAM config>remote-failure dying-gasp shutdown
ethernet0/1 OAM config>
```

9.3.6 REMOTE-LOOPBACK

Configures parameters associated to the Ethernet OAM loopback. There are two configurable parameters:

9.3.6.1 REMOTE-LOOPBACK ENABLE

Enables the possibility for the interface to enter loopback mode in response to a control command received from the remote OAM client. Default is disabled.

Syntax:

```
ethernet0/1 OAM config>remote-loopback enable ?
<cr>
```

Example:

```
ethernet0/1 OAM config>remote-loopback enable
ethernet0/1 OAM config>
```

9.3.6.2 REMOTE-LOOPBACK TIMEOUT

Configures the maximum wait time for a response to the remote OAM client after sending a **loopback** control command. Default is 5 seconds.

Syntax:

```
ethernet0/1 OAM config>remote-loopback timeout ?
<1..10> Timeout value (seconds)
```

Example:

```
ethernet0/1 OAM config>remote-loopback timeout 10 ethernet0/1 OAM config>
```

9.3.7 **EXIT**

Returns to the corresponding Ethernet interface configuration menu.

Syntax:

```
ethernet0/1 OAM config>exit
```

Example:

```
ethernet0/1 OAM config>exit
ethernet0/1 config>
```

Chapter 10 Ethernet OAM Monitoring

10.1 Introduction

Describes the commands that are available to monitor the OAM Ethernet protocol. It includes the following two sections:

- Accessing the OAM protocol monitoring menu in an Ethernet interface.
- Ethernet OAM monitoring commands.

10.2 Accessing the Ethernet OAM monitoring menu

Access OAM monitoring through the monitoring menu for the Ethernet interface, associated through \mathbf{oam} , as shown in the following example.

Example:

```
*monitor
Console Operator
+network ethernet0/1
-- Ethernet Console --
ethernet0/1 ETH+oam
-- Ethernet OAM interface monitor --
ethernet0/1 OAM monitor+
```

10.3 Ethernet OAM monitoring commands

The following table details the various monitoring commands available for the Ethernet OAM. Each command is described in detail further down.

Command	Function
? (HELP)	Displays the available commands and their options.
CLEAR	Deletes the OAM statistics for the Ethernet interface being monitored.
LIST	Displays information on the state of the Ethernet OAM protocol.
REMOTE-LOOPBACK	Loopback control commands in the remote OAM client.
EXIT	Exits the Ethernet OAM monitoring menu.

10.3.1 ? (HELP)

Displays all the available commands and their options.

Syntax:

```
ethernet0/1 OAM monitor+?
```

Example:

```
ethernet0/1 OAM monitor+remote-loopback ?
start Initiate loopback mode on remote client
stop Terminate loopback mode on remote client
```

10.3.2 CLEAR

Deletes the OAM protocol statistics in the Ethernet interface being monitored.

Syntax:

```
ethernet0/1 OAM monitor+clear statistics
```

Example:

```
ethernet0/1 OAM monitor+clear statistics
ethernet0/1 OAM monitor+
```

10 Ethernet OAM Monitoring bintec elmeg

10.3.3 LIST

Displays a variety of information on the OAM protocol status in the Ethernet interface that is being monitored. The following options are available:

10.3.3.1 LIST DISCOVERY

Displays configuration information on the local OAM client and, where available, on the remote OAM client.

Syntax:

```
ethernet0/1 OAM monitor+list discovery
```

Example:

```
ethernet0/1 OAM monitor+list discovery
Local client configuration
       Mode: active
       Unidirection: not supported
      Link Monitor: supported
       Remote loopback: supported
      MIB retrieval: not supported
      MTU size: 1500
Remote client configuration
      MAC address: 0012430816D1
      Mode: active
      Unidirection: not supported
      Link Monitor: supported
       Remote loopback: supported
       MIB retrieval: not supported
       MTU size: 1500
       Organizationally Unique Identifier (OUI): 0x0C0
ethernet0/1 OAM monitor+
```

10.3.3.2 LIST RUNTIME

Displays internal information on the OAM protocol, such as the status variables for the different OAM subsystems (*Discovery*, *Parser* and *Multiplexer*), status of the OAM timers, the current status for the Discovery states machine, etc.

Syntax:

```
ethernet0/1 OAM monitor+list runtime
```

Example:

```
ethernet0/1 OAM monitor+list runtime
Runtime settings
      Local pdu: ANY
      Local_mux: FWD
      Local_par: FWD
       Local_link_status: OK
       Local_satisfied: YES
       Local_stable: YES
       Loopback_state: OFF
       PDU_cnt: 9
       PDU timer: ON
       Lost_link_timer: ON
       Link_monitor_timer: ON
       Loopback_timer: OFF
       Remote state valid: YES
       Remote stable: YES
       Remote evaluating: NO
Current local Discovery FSM state: SEND ANY
ethernet0/1 OAM monitor+
```

10.3.3.3 LIST STATISTICS

Shows a summary of the different OAM protocol statistics organized by categories: number of OAMPDUs transmitted and received (per type), number and type of critical events (both local and remote) and the number or type of link monitoring events produced in both OAM stations (local and remote).

Syntax:

```
ethernet0/1 OAM monitor+list discovery
```

Example:

```
ethernet0/1 OAM monitor+list statistics
Ethernet OAM interface statistics
       Information OAMPDUs Tx: 256
       Information OAMPDUs Rx: 256
       Event Notification OAMPDUs Tx: 0
       Event Notification OAMPDUs Rx: 0
       Duplicated Event Notification OAMPDUs Tx: 0
       Duplicated Event Notification OAMPDUs Rx: 0
       Loopback Control OAMPDUs Tx: 0
       Loopback Control OAMPDUs Rx: 0
       Variable Request OAMPDUs Tx: 0
       Variable Request OAMPDUs Rx: 0
       Variable Response OAMPDUs Tx: 0
       Variable Response OAMPDUs Rx: 0
       Organization Specific OAMPDUs Tx: 0
       Organization Specific OAMPDUs Rx: 0
       Unknown OAMPDUs Rx: 0
Local critical events
      Link fault: 0
       Critical event: 0
      Dying gasp: 0
Remote critical events
      Link fault: 0
       Critical event: 0
      Dying gasp: 0
Local event errors
       Errored Symbol Period: 0
       Errored Frame: 0
       Errored Frame Period: 0
       Errored Frame Second: 0
Remote event errors
       Errored Symbol Period: 0
       Errored Frame: 0
       Errored Frame Period: 0
       Errored Frame Second: 0
ethernet0/1 OAM monitor+
```

10.3.3.4 LIST STATUS

Displays active configuration information on the OAM protocol: operating mode, OAMPDUs transfer rate, timeout to restart the Discovery status machine, thresholds and windows for link monitoring, action to take whenever the high threshold is exceeded, and actions to take when critical events are received from the remote OAM station.

Syntax:

```
ethernet0/1 OAM monitor+list status
```

Example:

```
ethernet0/1 OAM monitor+list status

General OAM configuration

Mode: active

OAMPDU max-rate: 10 packets/s

OAMPDU min-rate: 10 packets/s

Lost-link timeout: 15 seconds

Link Monitoring

Status: on
```

10 Ethernet OAM Monitoring bintec elmeg

```
High-threshold action: none
       Symbol-period error
               Window: 500 million symbols
               Low-threshold: 1 error symbols
               High-threshold: 0 error symbols
       Frame error
               Window: 100 x 100 ms
               Low-threshold: 1 error frames
               High-threshold: 0 error frames
       Frame-period error
               Window: 2000 x 10.000 frames
               Low-threshold: 1 error frames
               High-threshold: 0 error frames
       Frame-seconds error
               Window: 600 x 100 ms
               Low-threshold: 1 error seconds
               High-threshold: 0 error seconds
Remote failure
       Critical-event action: none
       Dying-gasp action: none
       Link-fault action: none
ethernet0/1 OAM monitor+
```

10.3.4 REMOTE-LOOPBACK

Provided the necessary conditions are present, this option sends loopback control commands to the remote OAM station. Three conditions are required to send a **loopback** control command to the remote OAM client:

- The local OAM client must be configured in active mode.
- The remote OAM client must support loopback. This aspect is learned by the local OAM client during the protocol discovery phase. To verify that this requirement is fulfilled, enter the **list discovery** monitoring command.
- The OAM session must be established. To check this, enter the list runtime monitoring command.

The two available options for this command are as follows:

10.3.4.1 REMOTE-LOOPBACK START

Sends a **loopback start** control command to the remote OAM client. If the operation is successful, the remote station returns all the traffic received through the Ethernet interface with the exception of the OAMPDU packets, which it continues to treat as usual.

Syntax:

ethernet0/1 OAM monitor+remote-loopback start

Example:

```
ethernet0/1 OAM monitor+remote-loopback start
ethernet0/1 OAM monitor+
```

10.3.4.2 REMOTE-LOOPBACK STOP

Through this option, a **loopback stop** control command is sent to the remote OAM client. This operation is only executed if the remote OAM client is in loopback mode. Once the operation is completed, the remote OAM client transmits traffic received through the interface as usual.

Syntax:

```
ethernet0/1 OAM monitor+remote-loopback stop
```

Example:

```
ethernet0/1 OAM monitor+remote-loopback stop
ethernet0/1 OAM monitor+
```

10.3.5 EXIT

Returns to the monitoring menu of the relevant Ethernet interface.

Syntax:

ethernet0/1 OAM monitor+exit

Example:

ethernet0/1 OAM monitor+exit

ethernet0/1 ETH+

11 Examples bintec elmeg

Chapter 11 Examples

11.1 PVST+

11.1.1 Scenario

This scenario shows three switches joined to a loop so that, if a failure occurs, there is an alternative route for the data. If you want each switch to act as the *root* for each of the VLANs used, use 20, 21 and 30.

Fig. 2: Scenario

3 devices are used:

- Juniper EX4200 (Bridge ID= 00:1f:12:3f:c6:c0).
- XXX (Bridge ID= 00:a0:26:a2:00:42).
- Cisco Catalyst 3560 (Bridge ID= 00:12:da:e1:21:80).

Device IPs for VLAN

Vlan	EX4200	xxx	Catalyst 3560
Vlan 20	172.16.10.1	172.16.10.2	172.16.10.3
Vlan 21	172.16.12.1	172.16.12.2	172.16.12.3
Vlan 30	172.16.30.1	172.16.30.2	172.16.30.3

Spanning tree priorities for VLAN:

PVST+	Root	Priority Ex4200	Catalyst 3560	bintec XXX
Vlan 20	Catalyst 3560	4096	0	8192
Vlan 21	XXX	8192	4096	0
Vlan 30	Juniper EX4200	0	8192	4096

11.1.2 Configuration

The first step is to create the Ethernet subinterfaces and associate the IP addresses and the VLANs that use them.

```
network ethernet0/0.20
; -- Ethernet Subinterface Configuration --
        ip address 172.16.10.2 255.255.255.0
;
        encapsulation dotlq 20
;
    exit
;
```

Next, define the Spanning Tree instances. Please note, you need to explicitly create the instance associated to the VLAN

```
network ethernet0/0
; -- Ethernet Interface User Configuration --
    repeater-switch
; -- Switch User Config --
        port 1 stp enable instance 1
        port 2 stp enable instance 1
        port 2 stp enable instance 2
        port 2 stp enable instance 3
        port 2 stp enable instance 4
        port 4 stp enable instance 1
        port 4 stp enable instance 2
        port 4 stp enable instance 3
        port 4 stp enable instance 4
        stp 1 vlan 20
        stp 1 bridge-priority 8192
        stp 2 vlan 21
        stp 2 bridge-priority 0
        stp 3 vlan 30
        stp 3 bridge-priority 4096
        stp 4 vlan 1
     exit
```

Lastly, configure the VLAN in the switch.

```
feature vlan
; -- VLAN configuration --
    enable
;
    vlan 20 ethernet0/0 port 2
    vlan 20 ethernet0/0 port 4
    vlan 20 ethernet0/0 port internal
    vlan 21 ethernet0/0 port 2
    vlan 21 ethernet0/0 port 4
    vlan 21 ethernet0/0 port 4
    vlan 21 ethernet0/0 port internal
    vlan 30 ethernet0/0 port 2
    vlan 30 ethernet0/0 port 4
    vlan 30 ethernet0/0 port 5
    vlan 30 ethernet0/0 port 4
    vlan 30 ethernet0/0 port 5
    ingress-filter ethernet0/0 port 2
    ingress-filter ethernet0/0 port 3
```

```
ingress-filter ethernet0/0 port 4
;
    tag-insertion ethernet0/0 port 2
    tag-insertion ethernet0/0 port 3
    tag-insertion ethernet0/0 port 4
;
    exit
;
```

The full configuration displayed is as follows:

```
; Showing Menu and Submenus Configuration for access-level 15 \dots
; KFRouter WL IPSec SNA VoIP T+ 32 132 Version 10.09.13
  log-command-errors
  no configuration
  set hostname XXX
  add device eth-subinterface ethernet0/0 20
  add device eth-subinterface ethernet0/0 21
  add device eth-subinterface ethernet0/0 30
  network ethernet0/0
; -- Ethernet Interface User Configuration --
     repeater-switch
; -- Switch User Config --
        port 1 stp enable instance 1
        port 2 stp enable instance 1
        port 2 stp enable instance 2
        port 2 stp enable instance 3
        port 2 stp enable instance 4
        port 4 stp enable instance 1
        port 4 stp enable instance 2
        port 4 stp enable instance 3
        port 4 stp enable instance 4
        stp 1 vlan 20
        stp 1 bridge-priority 8192
        stp 2 vlan 21
        stp 2 bridge-priority 0
        stp 3 vlan 30
        stp 3 bridge-priority 4096
        stp 4 vlan 1
     exit
   exit
  network ethernet0/0.20
 -- Ethernet Subinterface Configuration --
     ip address 172.16.10.2 255.255.255.0
     encapsulation dot1q 20
   exit
  network ethernet0/0.21
  -- Ethernet Subinterface Configuration --
     ip address 172.16.12.2 255.255.255.0
     encapsulation dot1q 21
   exit
  network ethernet0/0.30
 -- Ethernet Subinterface Configuration --
```

```
ip address 172.16.30.2 255.255.255.0
   encapsulation dot1q 30
 exit
 feature vlan
-- VLAN configuration --
   enable
  vlan 20 ethernet0/0 port 2
   vlan 20 ethernet0/0 port 4
   vlan 20 ethernet0/0 port internal
   vlan 21 ethernet0/0 port 2
   vlan 21 ethernet0/0 port 4
   vlan 21 ethernet0/0 port internal
   vlan 30 ethernet0/0 port 2
   vlan 30 ethernet0/0 port 4
   vlan 30 ethernet0/0 port internal
   ingress-filter ethernet0/0 port 2
   ingress-filter ethernet0/0 port 3
   ingress-filter ethernet0/0 port 4
   tag-insertion ethernet0/0 port 2
   tag-insertion ethernet0/0 port 3
   tag-insertion ethernet0/0 port 4
 exit
 dump-command-errors
```