X4000

Release Notes

System Software Release 5.1 Revision 5 15. Juni 2000

System Software Release 5.1.5

Diese Release Notes beschreiben neue Funktionen, Änderungen und behobene Fehler der Software Release 5.1.5 für **X4000**.

1	System-Software aktualisieren	5
2	Neue Funktionen	6
2.1	Always On/Dynamic ISDN (AO/DI)	6
2.1.1	Kurzbeschreibung	6
2.1.2	Wie funktioniert AO/DI?	7
2.1.3	Wie wird AO/DI konfiguriert?	8
2.1.4	Konfigurationsbeispiele für BOD	18
2.2	Man Machine Interface (MMI)	20
2.2.1	Default Screen festlegen	20
2.2.2	Konfiguration sichern	21
2.2.3	X4000 neustarten	22
2.2.4	Betriebstemperatur überwachen	22
3	Änderungen	24
3.1	Serielle Schnittstellen	24
3.1.1	Anschließen	25
3.1.2	Konfiguration mit Setup Tool	26
3.1.3	Pin-Belegung der Schnittstellen	31
3.2	Verschlüsselung	44
3.2.1	Zusätzliche Verschlüsselungsprotokolle werden unterstützt	44
3.3	IPX	47
3.3.1	Standardwertfür NetBIOSBroadcastreplication wurdezu <i>no</i> ge 47	ändert
4	Behobene Fehler	48
4.1	Frame Relay	48
4.2	OSPF	48

1 System-Software aktualisieren

- Beziehen Sie die aktuelle System-Software von BinTecs WWW-Server auf www.bintec.de (Abschnitt Produkte/Download) bzw. von www.x4000.de.
- Mit dieser System-Software können Sie X4000 aktualisieren (siehe Kapitel 10.2 "Software-Update durchführen" in Ihrem Benutzerhandbuch).
- Wenn Sie Release 5.1 Revision 5 installiert haben, wollen Sie sicher auch die aktuellste Dokumentation (in Adobes PDF-Format) beziehen. Diese ist ebenfalls im Download-Bereich von BinTecs WWW-Server zu finden. Bitte beachten Sie die Informationen in der Last-Minute-Information!

Wenn Sie die System-Software aktualisieren, ist es empfehlenswert, auch die aktuellsten Versionen der BRICKware for Windows und der UNIX Tools zu verwenden. Beides können Sie von BinTecs WWW-Server beziehen.

2 Neue Funktionen

2.1 Always On/Dynamic ISDN (AO/DI)

Der Multiprotokoll-Router **X4000** stellt Ihnen AO/DI ab System-Software Release 5.1.5 zur Verfügung.

Always On/Dynamic ISDN (AO/DI) nutzt die bereits vorhandene ISDN-Infrastruktur, um ohne Hardware-Änderungen einen neuen Dienst für den Nutzer einzurichten: AO/DI stellt eine ständig verfügbare (always on) aber dennoch kostengünstige Verbindung vom Endkunden zum Internet Service Provider dar.

2.1.1 Kurzbeschreibung

AO/DI nutzt die X.25-Datenpaketübertragung im D-Kanal (X.31), um eine PPP-Verbindung (PPP over X.25) aufzubauen. Im D-Kanal stehen für die Datenübertragung 9600 bit/s zur Verfügung (D-Kanal-Modus). Bei steigendem Bandbreitenbedarf werden ein oder zwei B-Kanäle dynamisch hinzugeschaltet (Dynamic ISDN). Die Datenübertragung erfolgt in diesem Fall ausschließlich im B-Kanal bzw. in den B-Kanälen, d.h. die B-Kanäle bleiben bandbreiten-intensiven Anwendungen vorbehalten (B-Kanal-Modus).

AO/DI bietet folgende Vorteile:

- drei vollwertige, bei Bedarf unabhängige Kommunikationskanäle
- permanenter Anschluß an das Internet zu wirtschaftlich g
 ünstigen Bedingungen
- transparente Bandbreitenregelung
- im D-Kanal-Modus
 - hohe Zuverlässigkeit und garantierte Durchlaufzeiten
 - volumenorientierter, entfernungunabhängiger Tarif

2

im B-Kanal-Modus:

 zeitabhängige Verbindungsgebühren nur für bandbreiten-intensive Anwendungen

2.1.2 Wie funktioniert AO/DI?

AO/DI wird bei **X4000** über ein spezielles PPP-Interface realisiert. Sobald das Interface konfiguriert und betriebsbereit ist, erfolgt der initiale PPP-Verbindungsaufbau über X.31 (X.25 im D-Kanal). Dabei wird die Authentisierung des PPP-Verbindungspartners durchgeführt und es werden gegebenenfalls eine dynamische IP-Adresse und DNS-Adressen zugewiesen (AO/DI-Client-Modus).

Die Verwendung der B-Kanäle wird anhand des Datendurchsatzes oder über applikationsabhängiges Bandbreitenmanagement (Bandwidth on Demand, BOD für IP-basierende Applikationen) geregelt. Sowohl das durchsatzabhängige als auch das applikationsgesteuerte Bandbreitenmanagement nutzt das Bandwidth Allocation Control Protocol (BACP/BAP nach RFC 2125), um mit der Gegenstelle zu vereinbaren, unter welchen Umständen B-Kanäle zu- bzw. abgeschaltet werden sollen. Die Verwendung von BACP/BAP wird während des initialen Verbindungsaufbaus vereinbart. Da die D-Kanal-Verbindung normalerweise nach dem Verbindungsaufbau nicht mehr beendet wird, stellt sie eine ständig verfügbare (Always on) Anbindung zum Provider dar.

Sobald die Bandbreite des D-Kanals für eine Datenübertragung nicht mehr ausreicht, werden B-Kanäle zugeschaltet und die Datenübertragung erfolgt ausschließlich in den B-Kanälen (Dynamic ISDN). Auf **X4000** ist dies durch eine erweiterte Konfigurationsmöglichkeit innerhalb des IP-Subsystems realisiert. Analog dem Konzept für IP-Access-Listen werden einem Interface Filter, Regeln und Regelketten zugewiesen (siehe Benutzerhandbuch, Kapitel 9.2.8 "Filter (Access Lists)". Mit Hilfe dieser Regeln kann man festlegen, ob bei bestimmten Protokollen, Ports oder IP-Adressen zusätzliche B-Kanäle aufgebaut werden sollen oder ob der Datentransfer ausschließlich im D-Kanal erfolgen darf.

2.1.3 Wie wird AO/DI konfiguriert?

In diesem Kapitel finden Sie folgende Informationen:

- Eine Übersicht über die Konfigurationsschritte f
 ür AO/DI auf X4000 (siehe "Konfigurationsschritte", Seite 8).
- Die Konfiguration von X4000 f
 ür AO/DI mit dem Setup Tool ("Konfiguration mit dem Setup Tool", Seite 9).

Einige Konfigurationsbeispiele für applikationsabhängiges Bandbreitenmanagement finden Sie in Kapitel 2.1.4, Seite 18.

Konfigurationsschritte

Um X4000 für AO/DI zu konfigurieren, sind folgende Schritte erforderlich:

- X.31-Konfiguration durchführen, d.h. den TEI (terminal endpoint identifier) Value für X.25 (Packet Switch) reservieren (siehe "X.31-Konfiguration", Seite 9)
- X.25 Konfiguration durchführen (siehe "X.25-Konfiguration", Seite 9):
 - Link-Konfiguration f
 ür Datex-P
 - Call-Routing
- AO/DI-Partner als WAN-Partner anlegen (siehe "AODI-Partner als WAN-Partner anlegen", Seite 11)
 - PPP-Parameter festlegen
 - das PPP-Interface als AO/DI-Interface definieren
 - X.25 Zieladresse f
 ür initialen Verbindungsaufbau eintragen
 - durchsatzabhängiges Bandbreitenmanagement (dynamische B-Kanalbündelung) regeln
 - applikationsabhängiges Bandbreitenmanagement regeln

Bei der X.25-Konfiguration ist folgendes zu beachten:

Einige der X.25-Parameter müssen dem angeschlossenen X.25-Netz angepaßt werden. Für Datex-P muß im Setup Tool das Feld **Windowsize/Packetsize Neg.** ausgeschaltet werden.

Bei **X4000** ist die X.25-Software grundsätzlich als X.25-Switch ausgelegt. Für AO/DI muß dieser Switch entsprechend konfiguriert werden (siehe "X.25-Konfiguration", Seite 9).

Konfiguration mit dem Setup Tool

Dieser Abschnitt beschreibt alle notwendigen Schritte, um X4000 mit dem Setup Tool für AO/DI zu konfigurieren.

X.31-Konfiguration

Gehen Sie folgendermaßen vor, um X.31 X.25 zuzuordnen:

- Gehen Sie zu CM-1BRI, ISDN S0 ADVANCED SETTINGS.
- Wählen Sie X.31 TEI Value aus: specify.
- Geben Sie Specify TEI Value ein: 1.
- Wählen Sie X.31 TEI Service aus: Packet Switch.
- Bestätigen Sie mit SAVE.

Sie befinden sich wieder im Menü CM-1BRI, ISDN SO.

Bestätigen Sie mit SAVE.

Sie befinden sich wieder im Hauptmenü. Das Hauptmenü enthält ab diesem Zeitpunkt das X.25-Menü, das für die folgenden Konfigurationsschritte benötigt wird. Informationen zu den X.25-Parametern finden Sie in der Extended Features Reference auf www.bintec.de.

X.25-Konfiguration

Um die Link-Voreinstellungen der X.25-Konfiguration für Datex-P vorzunehmen, gehen Sie folgendermaßen vor:

- Gehen Sie zu X.25 b LINK CONFIGURATION.
- Wählen Sie die Schnittstelle aus, für die Sie X.25 konfigurieren möchten, z. B. x31d2-0-1.

Folgende Teile des Menüs sind für diesen Konfigurationsschritt relevant:

Feld	Bedeutung
L3 Packet Size	Zulässige Größe der Datenpakete für diese Verbindung auf der dritten Ebene des OSI- Modells.
Windowsize/Packetsize Neg.	Aushandlung der Größe von Windowsize und Packetsize mit der Gegenseite. Für Datex-P gibt es nur eine sinnvolle Einstellung: <i>never</i> , d.h. die Aushandlung wird abgeschaltet.
Highest Two-Way- Channel (HTC)	Definiert die höchste Anzahl an virtuellen Kanälen.

Tabelle 2-1: X.25 b LINK CONFIGURATION EDIT

- Wählen Sie L3 Packet Size max aus: 256.
- Wählen Sie Windowsize/Packetsize Neg. aus: never.
- Geben Sie Highest Two-Way-Channel (HTC) ein: 1.
- Bestätigen Sie mit **SAVE**.
- Verlassen Sie X.25 LINK CONFIGURATION mit Exit.

Um die Routing-Voreinstellungen der X.25-Konfiguration vorzunehmen, gehen Sie folgendermaßen vor:

Gehen Sie zu X.25 • ROUTING • ADD.

Folgende Teile des Menüs sind für diesen Konfigurationsschritt relevant:

Feld	Bedeutung
Source Link	Quellschnittstelle der Datenpakete.
Destination Link	Zielschnittstelle der Datenpakete.
Destination X.25 Address	X.25-Zieladresse

Tabelle 2-2: X.25 **ROUTING** ADD

- Wählen Sie **Source Link** aus: *local*.
- Wählen Sie **Destination Link** aus, z. B. x31d2-0-1.
- Geben Sie Destination X.25 Address ein, z. B. 019011.
- Bestätigen Sie mit SAVE.
- Verlassen Sie X.25 Sector Routing ADD mit Exit.
- Verlassen Sie X.25 ROUTING mit Exit. Sie befinden sich wieder im Hauptmenü.

AODI-Partner als WAN-Partner anlegen

Um ein AO/DI-fähiges PPP-Interface zu definieren, gehen Sie folgendermaßen vor:

- Gehen Sie zu WAN PARTNER + ADD.
- Geben Sie Partner Name ein, z. B. AODI-partner.
- Wählen Sie Encapsulation aus: PPP.

Um die PPP-Einstellungen vorzunehmen, gehen Sie folgendermaßen vor:

- Gehen Sie zu WAN PARTNER ADD PPP.
- Wählen Sie Authentication aus, z. B. CHAP.
- Überspringen Sie Partner PPP ID.
- Geben Sie Local PPP ID ein, z. B. bintec_router.

Geben Sie zweimal PPP Password ein, z. B. secret. Bei Eingabe des Paßworts erscheint auf dem Bildschirm für jeden Buchstaben ein Sternchen als Platzhalter.

Bestätigen Sie mit OK.

Um AO/DI auf dem PPP-Interface zu aktivieren und die X.25-Adresse einzutragen, gehen Sie folgendermaßen vor:

b Gehen Sie zu **WAN PARTNER b** ADD **b** ADVANCED SETTINGS.

Feld	Bedeutung
Layer 1 Protocol	Legt fest, welches Layer 1 Protocol X4000 nutzen soll. Für AO/DI gibt es nur eine sinnvolle Einstellung: <i>AO/DI</i> .
Channel-Bundling	Legt fest, ob bzw. welche Art von Kanalbünde- lung für Verbindungen mit dem WAN-Partner genutzt werden soll (siehe Handbuch, Kapitel 7.2.2) Wenn unter Layer 1 Protocol <i>AO/DI</i> ausgewählt ist, ist für Channel-Bundling automatisch <i>dynamic</i> eingestellt.
Total Number of Channels	Definiert bei dynamischer Kanalbündelung die maximale Anzahl der Kanäle, die geöffnet wer- den dürfen. Mögliche Werte bei X4000 : 1 oder 2.
Remote X.25 Address	X.25-Zieladresse. Erscheint nur, wenn unter Layer 1 Protocol AO/DI ausgewählt ist.

Folgender Teil des Menüs ist für diesen Konfigurationsschritt relevant:

Tabelle 2-3: WAN PARTNER + ADD + ADVANCED SETTINGS

Wählen Sie Layer 1 Protocol aus: AO/DI.

- Geben Sie Total Number of Channels ein, z. B. 1.
- Geben Sie **Remote X.25 Address** ein, z. B. 019011.

Gehen Sie folgendermaßen vor, um BACP/BAP für den "AO/DI-Client"-Zugang zu konfigurieren (Regelung des durchsatzgesteuerten Bandbreitenmanagements):

Gehen Sie zu WAN PARTNER ADD ADVANCED SETTINGS EXTENDED INTERFACE SETTINGS (OPTIONAL).

Feld	Bedeutung
Mode	Legt fest, welcher Modus für BOD verwendet wird. Für AO/DI-Client wird ausschließlich die Einstellung <i>BAP, Active Mode</i> benutzt.
Line Utilization Weighting	Gewichtung innerhalb des Intervalls, das für die Zu- bzw. Abschaltung von B-Kanälen betrach- tet wird.
Line Utilization Sample (sec)	Länge des Intervalls, über welches die gemes- senen Durchsatzdaten gemittelt und mit Line Utilization Weighting gewichtet werden.
Gear Up Threshold	Auslastung, ab der bei einer Verbindung ein weiterer B-Kanal zugeschaltet wird.
Gear Down Threshold	B-Kanäle werden weggeschaltet, bis die ver- bleibenden Kanäle mindestens den hier ver- bleibenden Auslastungsgrad in Prozent aufweisen.
D-Channel Queue Length	Schwellwert für die im D-Kanal angesammelte Anzahl von Bytes, ab der in den B-Kanal- Modus gewechselt werden soll.
Maximum Number of Dialup Channels	Maximale Anzahl der Kanäle, die geöffnet wer- den dürfen. Der Wert wird unter WAN PARTNER ▶ ADD ▶ ADVANCED SETTINGS im Feld Total Number of Channels festgelegt.

Folgender Teil des Menüs ist für diesen Konfigurationsschritt relevant:

Tabelle 2-4:
 WAN PARTNER IN ADD INTERFACE SETTINGS (OPTIONAL)
 ADD INTERFACE SETTINGS (OPTIONAL)

Im Feld Mode ist für AO/DI die folgende Auswahlmöglichkeit relevant:

Mögliche Werte	Bedeutung	
BAP, Active Mode	Das Bandwidth Allocation Protocol (BAP) kennt drei verschiedene Möglichkeiten, eine Band- breitenänderung zu vereinbaren. Im Active Mode zeigt es folgendes Verhalten:	
	Call-Request: einer der beiden Kommuni- kationspartner möchte einen B-Kanal zu- schalten; das Zuschalten wird gegebenen- falls initiiert.	
	Callback-Request: die Gegenseite wird auf- gefordert, einen B-Kanal zuzuschalten; das Zuschalten wird nicht initiiert aber gegebe- nenfalls akzeptiert.	
	Link-Drop-Request: ein Kommunikations- partner möchte einen B-Kanal abbauen; der Abbau wird gegebenenfalls initiiert oder akzeptiert.	

Tabelle 2-5: **Mode** = *BAP*, *Active Mode*

- Wählen Sie Mode aus: BAP, Active Mode.
- Übernehmen Sie f
 ür die anderen Felder dieses Men
 üs die voreingestellten Werte.
- Bestätigen Sie mit SAVE.
- Bestätigen Sie mit OK.

Um die erforderliche ISDN-Rufnummer für die B-Kanal-Zuschaltung einzutragen, gehen Sie folgendermaßen vor:

Geben Sie Number ein, z. B.: 0911123456.

- Wählen Sie **Direction** aus: *outgoing*.
- Bestätigen Sie mit SAVE.
- Verlassen Sie WAN PARTNER + ADD WAN NUMBERS + ADD mit Exit.

Bei dynamischer Vergabe der IP-Adresse seitens des Internet Service Providers, gehen Sie folgendermaßen vor:

- Gehen Sie zu WAN PARTNER ADD IP.
- Wählen Sie IP Transit Network aus: dynamic client.
- Bestätigen Sie mit SAVE.
- Bestätigen Sie mit SAVE.
- Verlassen Sie WAN PARTNER mit Exit. Sie befinden sich wieder im Hauptmenü.

Applikationsgesteuertes Bandbreitenmanagement (optional)

Applikationsgesteuertes Bandbreitenmanagement wird über Filter und Regeln in ähnlicher Weise konfiguriert wie Access-Listen für IP-Pakete (siehe Handbuch, Kapitel 9.2.8 "Filter (Access Lists)"). Zunächst werden Filter definiert, die festlegen, welche IP-Pakete (und damit Applikationen) Einfluß auf die zur Verfügung stehende Bandbreite haben sollen. Falls mehrere Filter definiert sind, können sie mit Hilfe einer Regelkette miteinander verknüpft werden.

Gehen Sie folgendermaßen vor, um entsprechende Filter zu definieren:

- Gehen Sie zu IP + BANDWIDTH ON DEMAND (BOD) + FILTER + ADD.
- Geben Sie Description ein, z. B. mail_smtp_out.
- Wählen Sie Protocol aus. z. B. tcp.
- Geben Sie Destination Address ein, z. B. 172.16.08.15.
- Geben Sie Destination Mask ein, z. B. 255.255.255.255.
- Wählen Sie Destination Port aus: specify.
- Geben Sie Specify Port ein, z. B. 25 (Port f
 ür SMTP).

Bestätigen Sie mit **SAVE**.

Sie sehen eine Liste aller bisher definierten Filter.

Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) FILTER mit Exit.

Eine Regel für BOD wird in ähnlicher Weise festgelegt wie eine Regel für IP-Pakete (siehe Handbuch, Kapitel 9.2.8 "Filter (Access Lists)"). Verschiedene Regeln bestehen normalerweise aus unterschiedlichen Filtern und können untereinander zu einer Regelkette verknüpft werden. Jede Regel zieht eine Aktion nach sich, für jede Regel kann aber auch die Richtung der Datenpakete angegeben werden, für die sie gelten soll, d.h. für gesendete oder für empfangene Datenpakete.

Gehen Sie folgendermaßen vor, um eine Regel für BOD zu definieren:

➢ Gehen Sie zu IP ➡ BANDWIDTH ON DEMAND (BOD) ➡ RULES FOR BOD ➡ ADD.

Neben den bereits bekannten Feldern zur Definition von herkömmlichen Regeln (siehe Handbuch, Kapitel 9.2.8 "Filter (Access Lists)") enthält das Menü folgende Felder:

Feld	Bedeutung	
Direction	Richtung der Datenpakete, auf die die Regel angewandt werden soll. Mögliche Werte:	
	<i>incoming</i> : eingehende Datenpakete	
	outgoing: ausgehende Datenpakete	
	both: eingehende und ausgehende Daten- pakete	
Number of Channels	Zahl der B-Kanäle, die zugeschaltet werden sollen. Mögliche Werte bei X4000 : 1 oder 2.	

Tabelle 2-6: IP 🔶 BANDWIDTH ON DEMAND (BOD) 🔶 RULES FOR BOD 🔶 ADD

Das Feld **Action**, das angibt, wie mit einem ausgefilterten Datenpaket verfahren werden soll, enthält folgende Auswahlmöglichkeiten:

Mögliche Werte	Bedeutung
invoke M	B-Kanäle werden zugeschaltet, wenn die Regel paßt.
Invoke !M	B-Kanäle werden zugeschaltet, wenn die Regel nicht paßt.
deny M	B-Kanäle werden nicht zugeschaltet, wenn die Regel paßt.
deny !M	B-Kanäle werden nicht zugeschaltet, wenn die Regel nicht paßt.
ignore	Die Regel wird ignoriert bzw. in einer Regelkette wird die Regel übersprungen.

Tabelle 2-7: Action

- Wählen Sie Action aus: Invoke M.
- Wählen Sie **Direction** aus: *outgoing*.
- Wählen Sie Number of Channels aus: 1.
- Wählen Sie Filter aus, z. B. mail_smtp_out.
- Bestätigen Sie mit SAVE.
- Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) RULES FOR BOD mit Exit.
- Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) mit Exit. Sie befinden sich wieder im Hauptmenü.

Um eine Regel auf ein Interface anzuwenden, gehen Sie folgendermaßen vor:

- Gehen Sie zu IP BANDWIDTH ON DEMAND (BOD) CONFIGURE INTERFACES FOR BOD.
- Wählen Sie das Interface aus, auf das Sie eine Regel anwenden möchten, z. B. aodiclient, und bestätigen Sie mit Return.

- Wählen sie die Regel aus, die Sie auf dieses Interface anwenden möchten, z. B. mail_smtp_out.
- Bestätigen Sie mit **SAVE**.
- Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) CONFIGURE INTERFACES FOR BOD EDIT mit Exit.
- Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) CONFIGURE INTERFACES FOR BOD mit Exit.
- Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) mit Exit. Sie befinden sich wieder im Hauptmenü.

2.1.4 Konfigurationsbeispiele für BOD

Zusätzliche Bandbreite bei HTTP-Verbindungen

Das folgende Beispiel zeigt Ihnen eine spezielle Konfiguration von **X4000** beim Verbindungsaufbau des Rechners mit der IP-Adresse 172.16.77.11 (TCP Port 80) zum Internet. Es soll immer dann in den B-Kanal-Modus mit einem B-Kanal gewechselt werden, wenn eine HTTP-Verbindung zum Internet aufgebaut wird.

Um das entsprechende Filter für BOD festzulegen, gehen Sie folgendermaßen vor:

- Gehen Sie zu IP + BANDWIDTH ON DEMAND (BOD) + FILTER + ADD.
- Geben Sie Description ein: hostxy_http_out.
- Wählen Sie **Protocol** aus: *tcp*.
- Geben Sie Source Address ein: 172.16.77.11.
- Geben Sie Source Mask ein: 255.255.255.255.
- Wählen Sie Destination Port aus: specify.
- Geben Sie Specify Port ein: 80.
- Bestätigen Sie mit SAVE.
 Sie sehen eine Liste aller bisher definierten Filter.

Verlassen Sie IP + BANDWIDTH ON DEMAND (BOD) + FILTER mit Exit.

Um eine Regel für BOD festzulegen, gehen Sie folgendermaßen vor:

Gehen Sie zu IP BANDWIDTH ON DEMAND (BOD) RULES FOR BOD ADD.

Wählen Sie Action aus: Invoke M.

Wählen Sie Direction aus: outgoing.

- Wählen Sie Number of Channels aus: 1.
- Wählen Sie **Filter** aus: *hostxy_http_out (1)*.
- Bestätigen Sie mit SAVE.
- Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) RULES FOR BOD mit Exit.

Mail-Empfang auf D-Kanal beschränken

Im folgenden Konfigurationsbeispiel wird der Mail-Empfang auf den D-Kanal beschränkt, es erfolgt kein Wechsel in den B-Kanal-Modus. Auch bei der Abfrage, ob neue Mails angekommen sind, wird nicht in den B-Kanal-Modus gewechselt.

Um das entsprechende Filter für BOD festzulegen, gehen Sie folgendermaßen vor:

- Gehen Sie zu IP + BANDWIDTH ON DEMAND (BOD) + FILTER + ADD.
- Geben Sie Description ein: mail_pop3_in.
- Wählen Sie Protocol aus: tcp.
- Geben Sie Destination Address ein: 172.16.08.15.
- Geben Sie Destination Mask ein: 255.255.255.255.
- Wählen Sie Destination Port aus: specify.
- Geben Sie Specify Port ein: 110.

Bestätigen Sie mit **SAVE**.

Sie sehen eine Liste aller bisher definierten Filter.

Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) FILTER mit Exit.

Um eine Regel für BOD festzulegen, gehen Sie folgendermaßen vor:

- Gehen Sie zu IP SANDWIDTH ON DEMAND (BOD) RULES FOR BOD ADD.
- Wählen Sie Action aus: deny.
- Wählen Sie Direction aus: incoming.
- Wählen Sie Number of Channels aus: 1.
- Wählen Sie Filter aus: mail_pop3_in (2).
- Bestätigen Sie mit **SAVE**.
- Verlassen Sie IP BANDWIDTH ON DEMAND (BOD) RULES FOR BOD mit Exit.

2.2 Man Machine Interface (MMI)

BinTec's Man Machine Interface mit Display und Eingabetasten verfügt ab Release 5.1.5 über eine Reihe neuer Funktionen.

2.2.1 Default Screen festlegen

Standardmäßig wird nach Ablauf des Idletimers das Logo auf dem Display angezeigt. Um einen anderen Bildschirm des MMI als Default Screen zu verwenden, gehen Sie folgendermaßen vor:

Halten Sie die Taste **C** für die Dauer von drei Sekunden gedrückt.

Bestätigen Sie mit OK.

Der ausgewählte Bildschirm wird angezeigt und als Default Screen verwendet.

2.2.2 Konfiguration sichern

Gehen Sie folgendermaßen vor, um die aktuelle Konfiguration von **X4000** durch die Verwendung der Eingabetasten zu sichern.

Halten Sie die Taste **OK** für die Dauer von drei Sekunden gedrückt.

Drücken Sie OK.

Die Konfiguration wird gesichert ... Konfiguration gesichert

Drücken Sie OK.

2.2.3 X4000 neustarten

Gehen Sie folgendermaßen vor, um X4000 durch Verwendung der Eingabetasten neu zu starten:

2

Halten Sie die Tasten OK und C f
ür die Dauer von drei Sekunden gedr
ückt.

Drücken Sie OK.

Nach 5 Sekunden wird der Neustart ausgeführt.

System-Reboot ... Warten Sie, bis X4000 wieder betriebsbereit ist!

2.2.4 Betriebstemperatur überwachen

Unter dem neuen Hauptmenü Monitoring haben Sie die Möglichkeit durch Auswahl von Aktuelle Temperatur die aktuelle Betriebstemperatur von X4000 in °C anzuzeigen.

	°C	40	50	60
Temp				
Temp1				
Temp2				

Die aktuelle Betriebstemperatur wird jeweils mit einem schwarzen Balken angezeigt. Temp zeigt die Temperatur an, die von einem Sensor im Grundgerät gemessen wird, **Temp1** und **Temp2** zeigt die auf der Erweiterungskarte gemessene Temperatur an. Eine PRI-Erweiterungskarte verfügt über zwei Temperatursensoren, eine BRI- und eine LAN-Erweiterungskarte verfügen über jeweils einen Sensor (**Temp1**).

Der Wert für die maximal zulässige Temperatur liegt derzeit bei 60 °C und wird jeweils mit einer durchgezogenen Linie auf dem Display angezeigt. Die maximal zulässige Temperatur kann duch Editieren der **MIB-Variable** svsX4ConfigTempAlarmTrap für das Grundgerät (Temp) bzw. der MIB-VariasysX4ConfigTempAlarmTrapMod1 blen und sysX4ConfigTempAlarmTrapMod2 für die Erweiterungskarten (Temp1 und Temp2) verändert werden. Bei Überschreiten dieser Temperatur erzeugt X4000 Traps, die über das Netzwerk ausgewertet werden können.

Änderungen 3

3.1 Serielle Schnittstellen

Das X4000-Grundgerät verfügt über zwei serielle WAN-Schnittstellen, deren voller Funktionsumfang mit Release 5.1.5 zur Verfügung steht:

Der erste serielle Port (Setup-Tool-Menü CM-SERIAL, SERIAL, UNIT 0) ist als Schnittstelle der Typen

- X.21/V.11 _
- V.35/V.11
- V.36/V.11

verwendbar.

Durch die Einstellung im Setup-Tool-Feld Connector (siehe Kapitel 3.1.2, Seite 26) kann der Port so umgestellt werden, daß X4000 sowohl im DCEals auch im DTE-Modus betrieben werden kann.

Durch entsprechende Einstellungen im Setup-Tool-Feld Connector werden physikalisch die Signalrichtung und Bedeutung der Pins umgedreht.

Der zweite serielle Port (Setup-Tool-Menü CM-SERIAL, SERIAL, UNIT 1) ist als Schnittstelle des Typs

X.21bis/V.28 _

verwendbar.

Bei diesem Port kann die Umstellung vom DCE- in den DTE-Modus und umgekehrt nur über die Verwendung eines DCE- bzw. DTE-Kabels verwirklicht werden.

	Interface Type	DTE-Modus	DCE-Modus
Port 1	X.21	Standardkabel	Standardkabel
	V.35	Connector = dte	Connector = dce
	V.36		
Port 2	X.21bis	DTE-Kabel	DCE-Kabel

Tabelle 3-1: Funktionalität der seriellen Ports

Bitte beachten Sie: Falls Sie mit einem vorhergehenden Release bereites den ersten seriellen Port für X.21 genutzt haben, müssen Sie nach dem Update auf System-Software 5.1.5 die X.21-Konfiguration wegen Änderungen in der MIB erneut durchführen.

3.1.1 Anschließen

Die zu verwendenden Kabel sind nicht im Lieferumfang von **X4000** enthalten, können aber bei Ihrem Händler bestellt werden.

Wir empfehlen, Original-BinTec-Kabel zu verwenden, die Sie von Ihrem Händler beziehen können.

Die Verwendung von anderen Kabeln kann zur Beschädigung des Geräts und zum Garantieverlust führen!

Beachten Sie die Beschreibung der Schnittstellen in Kapitel 3.1.3, Seite 31.

3.1.2 Konfiguration mit Setup Tool

Die Konfiguration der seriellen Schnittstellen wurde im Vergleich zu vorhergehenden Releases leicht modifiziert. Die entsprechenden Setup-Tool-Menüs haben ab Release 5.1.5 folgendes Aussehen:

```
X4000 Setup Tool
                                            BinTec Communications AG
[SLOT 3 UNIT 0 SERIAL]: Configure Serial Interface
                                                            MyRouter
    Interface Type
                       X.21
   Connector
                       dte
   Clock mode
                       auto
                       64000 bit/s
   Speed
                       auto
   Layer 2 Mode
    Interface Leads
                       disabled
                SAVE
                                        CANCEL
Use <Space> to select
```

Die Menüs haben jeweils folgende Felder:

Feld	Bedeutung		
Interface Type	Definiert den Schnittstellentyp des verwende- ten Ports. Mögliche Werte:		
	none (Standardwert): Schnittstelle wird nicht genutzt.		
	X.21: Nutzung als X.21/V.11-Schnittstelle		
	V.35: Nutzung als V.35/V.11-Schnittstelle		
	V.36: Nutzung als V.36/V.11-Schnittstelle		
	X.21bis: Nutzung als X.21bis/V.28-Schnitt- stelle		
Connector	Legt die Pin-Belegung des Ports fest (siehe Tabelle 3-3, Seite 30).		
	Nur beim ersten seriellen Port <i>CM-SERIAL</i> , <i>SERIAL</i> , <i>UNIT 0</i> kann durch diese Einstellung die Pin-Belegung beeinflußt werden, beim zweiten seriellen Port <i>CM-SERIAL</i> , <i>SERIAL</i> , <i>UNIT 1</i> muß ein entsprechendes DCE- bzw. DTE-Kabel ver- wendet werden!		
	Mögliche Werte:		
	dte (Standardwert): Die Pins sind als DTE- Schnittstelle belegt. Diese Einstellung ist z. B. dann erforderlich, wenn X4000 mit ei- nem öffentlichen Datennetz verbunden ist (z. B. Datex-P in Deutschland).		
	dce: Die Pins sind als DCE-Schnittstelle be- legt.		

Feld	Bedeutung
Clock Mode	Definiert, welcher Verbindungspartner das Taktsignal zur Synchronisation zwischen Sen- der und Empfänger gibt. Mögliche Werte:
	 <i>auto</i> (Standardwert): Die Einstellung richtet sich nach der für Connector getroffenen Auswahl: X4000 gibt das Taktsignal, wenn Connector = dce. X4000 empfängt das Taktsignal, wenn Connector = dte. In der Regel können Sie diese Einstellung übernehmen. <i>extern</i>: X4000 empfängt das Taktsignal, unabhängig von der unter Connector gewählten Einstellung. <i>intern</i>: X4000 gibt das Taktsignal, unabhän-
	gig von der unter Connector gewählten Einstellung.
Speed	Übertragungsrate der Verbindung, skalierbar von 2400 bit/s bis 8 Mbit/s.
	Der einzustellende Wert ist abhängig von Qua- lität und Länge des Kabels und vom Verbin- dungstyp (symmetrisch/asymmetrisch). Über eine kurze Distanz von bis zu 5 m und bei Ver- wendung von abgeschirmten Kabeln sind bis zu 8 Mbit/s möglich. Standardwert: <i>64000 bit/s</i>

Feld	Bedeutung					
Layer 2 Mode	Definiert den Wert des HDLC-Adressfelds in gesendeten Kommando-Frames (Schicht 2). Mögliche Werte:					
	 auto (Standardwert): Die für Connector getroffene Auswahl wird übernommen, d. h. bei Connector = dte hat das Adressfeld den Wert 0x01. bei Connector = dce hat das Adressfeld den Wert 0x03. In der Regel können Sie diese Einstellung übernehmen, z. B. auch bei Zugang zu einem öffentlichen Datennetz (z. B. Datex-P). dte: Das Adressfeld hat den Wert 0x03. 					
Interface Leads	Legt fest, ob X4000 den Status der Schnittstel- lenleitung überprüft. Bei beiden Verbindungs- partnern sollte der gleiche Wert eingestellt sein. Mögliche Werte: <i>enabled:</i> Der Status der Signalleitung (I bei					
	X.21, CTS bei V.35, V.36 und X.21bis) wird überprüft und als L1State übernommen.					
	disabled (Standardwert): Der Status wird nicht überprüft, die physikalische Leitung ist immer up. Bei dieser Einstellung sollten Sie die Schnittstellenleitung auf andere Weise überwachen, z. B. durch PPP-Keepalive.					

Tabelle 3-2: CM-SERIAL, Serial, Unit 0 bzw. CM-SERIAL, Serial, Unit 1

	Connector = DTE (Standardwert)	Connector = DCE	Port
Funktion	DTE	DCE	
Kabel	Standardkabel		
Pinbelegung	X.21: siehe Tabelle 3-4	1	
	V.35: siehe Tabelle 3-		
	V.36: siehe Tabelle 3-		
Funktion	DTE	DCE	
Kabel	DTE-Kabel	DCE-Kabel	2
Pinbelegung	X.21bis: siehe Tabelle		

Tabelle 3-3: Verwendung von Connector im Setup Tool

Gehen Sie folgendermaßen vor, um die seriellen Schnittstellen zu konfigurieren (die angegebenen Beispielswerte sind erforderlich, wenn Sie **X4000** an Datex-P anschließen):

- Gehen Sie zu CM-SERIAL, SERIAL, UNIT 0 bzw. CM-SERIAL, SERIAL, UNIT 1
- Wählen Sie Interface Type aus: z. B. X.21.
- Wählen Sie Connector aus: z. B. dte.
- Wählen Sie Clock Mode aus: z. B. auto.
- Wählen Sie Speed aus: z. B. 64000 bit/s.
- Wählen Sie Layer 2 Mode aus: z. B. auto.
- Wählen Sie Interface Leads aus: z. B. disabled.
- Bestätigen Sie mit SAVE.

3.1.3 Pin-Belegung der Schnittstellen

Im folgenden werden zunächst die Stecker beschrieben, die für X.21, V.35, V.36 bzw. X.21bis in der Regel verwendet werden:

- DB-15-Stecker für X.21 (siehe "DB-15-Stecker für X.21", Seite 32)
- M34-Stecker für V.35 (siehe "M34-Stecker für V.35", Seite 33)
- DB-37-Stecker für V.36 (siehe "DB-37-Stecker für V.36", Seite 35)
- DB-25-Stecker für X.21bis (siehe "DB-25-Stecker für X.21bis", Seite 37)

Anschließend werden die beiden seriellen **X4000**-Ports beschrieben, über die die genannten Schnittstellen bei **X4000** realisiert werden:

- 26-polige Mini-Delta-Ribbon-Buchse für X.21, V.35 und V.36 (siehe "Pin-Belegung der X.21/V.35/V.36-Schnittstelle von X4000", Seite 38)
- 20-polige Mini-Delta-Ribbon-Buchse für X.21bis (siehe "Pin-Belegung der X.21bis-Schnittstelle von X4000", Seite 41)

DB-15-Stecker für X.21

Für eine X.21-Schnittstelle wird in der Regel ein DB-15-Stecker nach ISO 4903 verwendet:

Bild 3-1: DB-15-Stecker (DTE)

Die Pins des DB-15-Steckers (DTE) bzw. -Buchse (DCE) sind folgendermaßen belegt:

Variable Connector = DTE		Signalrichtung Pin-Nr.	Variable Connector = DCE	
ITU-T	Signal		Signal	ITU-T
101	PG	1	PG	101
102	SG	8	SG	102
103	T+	9>	R+	104
103	T-	2>	R-	104
104	R+	<11	T+	103
104	R-	< 4	T-	103
105	C+	10>	l+	106
105	C-	3>	l-	106
106	+	< 12	C+	105
106	-	< 5	C-	105
115	S+	< 13	S+	114
115	S-	< 6	S-	114

Tabelle 3-4: Pin-Belegung eines DB-15-Steckers für X.21 (ISO 4903)

M34-Stecker für V.35

Für eine V.35-Schnittstelle wird in der Regel ein M34-Stecker nach ISO 2593 verwendet:

Bild 3-2: M34-Stecker

Variable Connector = DTE		Signalrichtung Pin-Nr.	Variable Connector = DCE	
ITU-T	Signal		Signal	ITU-T
101	ChGND	—— A ——	ChGND	101
102	SigGND	— В —	SigGND	102
103	TDA	P>	RDA	104
103	TDB	S>	RDB	104
104	RDB	< R	TDB	103
104	RDA	< T	TDA	103
105	RTS	C>	CTS	106
106	CTS	< D	RTS	105
115	RCA	< V	ТСА	114
115	RCB	< X	ТСВ	114
108/2	DTR	H>	DSR	107
109	DCD	< F	DCD	109
107	DSR	< E	DTR	108/2
114	ТСВ	< Y	ТСВ	114
114	ТСА	< AA	TCA	114

Die Pins des M34-Steckers sind folgendermaßen belegt:

Tabelle 3-5: Pin-Belegung eines M34-Steckers für V.35 (ISO 2593)

DB-37-Stecker für V.36

Für eine V.36-Schnittstelle wird in der Regel ein DB-37-Stecker nach ISO 4902 verwendet:

Bild 3-3: DB-37-Stecker

Variable Connector = DTE		Signalrichtung Pin-Nr.	Variable C D(onnector = CE
ITU-T	Signal		Signal	ITU-T
101	ChGND	1	ChGND	101
102	SigGND	—— 19 ——	SigGND	102
103	TDB	22>	RDB	104
103	TDA	4>	RDA	104
104	RDB	< 24	TDB	103
104	RDA	< 6	TDA	103
105	RTSB	25>	RTSB	106
105	RTSA	7>	CTSA	106
106	CTSB	< 27	RTSB	105
106	CTSA	< 9	RTSA	105
115	RCB	< 26	ТСВ	114
115	RCA	< 8	ТСА	114
108/2	DTRB	30>	DSRB	107
108/2	DTRA	12>	DSRA	107
109	DCDB	< 31	DCDB	109
109	DCDA	< 13	DCDA	109
107	DSRB	< 29	DTRB	108/2
107	DSRA	< 11	DTRA	108/2
114	ТСВ	< 23	ТСВ	114
114	ТСА	< 5	TCA	114

Die Pins des DB-37-Steckers sind folgendermaßen belegt:

Tabelle 3-6: Pin-Belegung eines DB-37-Steckers für V.36 (ISO 4902)

DB-25-Stecker für X.21bis

Für eine X.21bis-Schnittstelle wird in der Regel ein DB-25-Stecker nach ISO 2110 verwendet:

Bild 3-4: DB-25-Stecker

Die Pins des DB-25-Steckers	s sind folgendermaßen	belegt:
-----------------------------	-----------------------	---------

DTE-Kabel		Signalrichtung Pin-Nr	DCE-	Kabel
ITU-T	Signal		Signal	ITU-T
101	ChGND	1	ChGND	101
103	TD	2>	RD	104
104	RD	< 3	TD	103
105	RTS	4>	CTS	106
106	CTS	< 5	RTS	105
107	DSR	< 6	DTR	108/2
102	SigGND	7	SigGND	102
109	DCD	< 8	DCD	109
114	TxC	< 15	TxC	114
115	RxC	< 17	RxC	115
108/2	DTR	20>	DSR	107
113	XTC	24>	RxC / TxC	114/115
	VCC +5V	25	VCC +5V	

Tabelle 3-7: Pin-Belegung eines DB-25-Steckers für X.21bis (ISO 2110)

Pin-Belegung der X.21/V.35/V.36-Schnittstelle von X4000

Die serielle X.21/V.35/V.36-Schnittstelle von **X4000** ist als 26-polige Mini-Delta-Ribbon-Buchse ausgeführt. Je nach Einstellung unter **Interface Type** kann die Schnittstelle für X.21, V.35 oder V.36 verwendet werden.

Bild 3-5: 26-polige Mini-Delta-Ribbon-Buchse (erster serieller Port, links)

ITU-T	Richtung und Pin-Nr.	X.21- (DB-	-Pin 15)	V.35 (M34	-Pin 4)	V.36 (DB-	-Pin -37)
101	1	1	PG	А	ChGND	1	ChGND
102	2	8	SG	В	SigGND	19	SigGND
103	3>	9	T+	S	TDB	22	TDB
103	4>	2	Т-	Р	TDA	4	TDA
104	< 5	11	R+	Т	RDB	24	RDB
104	< 6	4	R-	R	RDA	6	RDA
105	7>	10	C+			25	RTSB
105	8>	3	C-	С	RTS	7	RTSA
106	< 9	12	l+			27	CTSB
106	< 10	5	I-	D	CTS	9	CTSA
115	< 11	13	S+	Х	RCB	26	RCB
115	< 12	6	S-	V	RCA	8	RCA
108/2	15>					30	DTRB
108/2	16>			н	DTR	12	DTRA
109	< 17					31	DCDB
109	< 18			F	DCD	13	DCDA
107	< 19					29	DSRB
107	< 20			E	DSR	11	DSRA
114	< 21			AA	ТСВ	23	ТСВ
114	< 22			Y	TCA	5	TCA
VCC+5V	25						

Die Pins der 26-poligen Mini-Delta-Ribbon-Buchse sind im DTE-Modus (**Connector** = *DTE*) folgendermaßen belegt:

Tabelle 3-8: Pin-Belegung der 26-poligen Mini-Delta-Ribbon-Buchse (DTE-Modus)

Die	Pins	der	26-poligen	Mini-Delta-Ribbon-Buchse	sind	im	DCE-Modus
(Connector = DCE) folgendermaßen belegt:							

ITU-T	Richtung und Pin-Nr.	X.21- (DB-	-Pin 15)	V.35 (M34	-Pin 4)	V.36 (DB·	-Pin -37)
101	1	1	PG	A	ChGND	1	ChGND
102	2	8	SG	В	SigGND	19	SigGND
104	3>	9	R+	S	RDB	22	RDB
104	4>	2	R-	Р	RDA	4	RDA
103	< 5	11	T+	Т	TDB	24	TDB
103	< 6	4	T-	R	TDA	6	TDA
106	7>	10	l+			25	RTSB
106	8>	3	l-	С	CTS	7	CTSA
105	< 9	12	C+			27	RTSB
105	< 10	5	C-	D	RTS	9	RTSA
114	< 11	13	S+	Х	тсв	26	тсв
114	< 12	6	S-	V	ТСА	8	ТСА
107	15>					30	DSRB
107	16>			н	DSR	12	DSRA
109	< 17					31	DCDB
109	< 18			F	DCD	13	DCDA
108/2	< 19					29	DTRB
108/2	< 20			E	DTR	11	DTRA
114	< 21			AA	тсв	23	тсв
114	< 22			Y	ТСА	5	ТСА
VCC+5V	25						

Tabelle 3-9: Pin-Belegung der 26-poligen Mini-Delta-Ribbon-Buchse (DCE-Modus)

Pin-Belegung der X.21bis-Schnittstelle von X4000

Die serielle X.21bis-Schnittstelle von **X4000** ist als 20-polige Mini-Delta-Ribbon-Buchse ausgeführt.

Bild 3-6: 20-polige Mini-Delta-Ribbon-Buchse (zweiter serieller Port, rechts)

Die Pins der 20-poligen Mini-Delta-Ribbon-Buchse sind folgendermaßen belegt (für DTE-Modus ist ein DTE-Kabel erforderlich, für DCE-Modus ein DCE-Kabel):

DTE/DCE				
ITU-T	Signal	Signalrichtung Pin-Nr.	X.21bis (DB-25)	
101	ChGND	1	1	
103	TD	2>	2	
104	RD	< 3	3	
105	RTS	4>	4	
106	CTS	< 5	5	
107	DSR	< 6	6	
102	SigGND	7	7	
109	DCD	< 8	8	
108/2	DTR	9>	20	
113	XTC	11>	24	
114	TxC	< 12	15	
115	RxC	< 13	17	
	VCC +5V	14		

Tabelle 3-10: Pin-Belegung der 26-poligen Mini-Delta-Ribbon-Buchse

3.2 Verschlüsselung

3.2.1 Zusätzliche Verschlüsselungsprotokolle werden unterstützt

Ab Release 5.1.5 unterstützt BinTec's **X4000** die Verschlüsselungsalgorithmen MPPE V2, DES und Blowfish. DES und Blowfish sind als BinTec-proprietäre Lösungen realisiert.

MPPE V2

Das Verschlüsselungsprotokoll MPPE Version 2, Nachfolger von MPPE, wurde von Microsoft entwickelt und verwendet ebenso einen 40-Bit- oder 56-Bit-Schlüssel. Diese werden bei der Authentisierung generiert.

Wenn auf **X4000** eine höhere Schlüssellänge eingestellt ist als auf einem einwählenden Dial-in-Client, kommt die Verbindung nicht zustande.

Wenn bei einem Verbindungspartner MPPE V1 als Verschlüsselungsprotokoll eingestellt ist, wird beim Verbindungsaufbau auch MPPE V2 akkzeptiert, falls die eingestellte Schlüssellänge übereinstimmt.

DES und Blowfish

Die Verschlüsselungsalgorithmen DES und Blowfish werden nur unterstützt, wenn auf **X4000** eine Lizenz für VPN eingetragen ist.

Bei Verwendung dieser proprietären Verschlüsselungsalgorithmen kann **X4000** entweder einen Schlüssel automatisch generieren oder Sie definieren in Abstimmung mit dem Verbindungspartner statisch einen individuellen Schlüssel.

Konfiguration über Setup Tool

Für Encryption im Menü *WAN PARTNER* ► *EDIT* stehen jetzt folgende Verschlüsselungsprotokolle zur Auswahl (nur verfügbar, wenn unter Encapsulation PPP, Async PPP over X.75, Async PPP over X.75/T.70/BTX oder X.25_PPP ausgewählt wurde):

Mögliche Werte	Bedeutung
MPPE 40	MPPE Version 1 mit 40-Bit-Schlüssel
MPPE 56	MPPE Version 1 mit 56-Bit-Schlüssel
MPPE V2 40	MPPE Version 2 mit 40-Bit-Schlüssel
MPPE V2 56	MPPE Version 2 mit 56-Bit-Schlüssel
DES 56	DES mit 56-Bit-Schlüssel
Blowfish 56	Blowfish mit 56-Bit-Schlüssel
none	keine Verschlüsselung

Tabelle 3-11: WAN PARTNER 🔶 EDIT

Bei Verwendung von DES oder Blowfish kann der Schlüssel mit der Authentisierung automatisch generiert oder statisch definiert werden. Dafür sind im Menü WAN PARTNER • EDIT • ADVANCED SETTINGS • EXTENDED INTERFACE SETTINGS (OPTIONAL) folgende Felder neu hinzugekommen:

Feld	Bedeutung
Encryption Key Negotiation	Definiert, ob ein Schlüssel für die Verbindung zum WAN-Partner automatisch generiert oder statisch definiert wird. Mögliche Werte:
	authentication (Standardwert): Schlüssel wird von X4000 automatisch generiert.
	 static: Schlüssel wird statisch definiert und muß unter Encryption Key (TX) bzw. Encryption Key (RX) eingetragen werden.
Encryption Key (TX)	(nur bei Encryption Key Negotiation = static)
	Schlüssel (im hexadezimalen Format) zur Ver- schlüsselung ausgehender Daten (muß mit dem Eintrag unter Encryption Key (RX) beim Verbindungspartner übereinstimmen).
Encryption Key (RX)	(nur bei Encryption Key Negotiation = static)
	Schlüssel (im hexadezimalen Format) zur Ver- schlüsselung eingehender Daten (muß mit dem Eintrag unter Encryption Key (TX) beim Ver- bindungspartner übereinstimmen).

Tabelle 3-12: WAN PARTNER
ADD ADVANCED SETTINGS
EXTENDED INTERFACE SETTINGS (OPTIONAL)

Beispiel

3

Gehen Sie beispielsweise folgendermaßen vor, um Daten mit einem WAN-Partner in verschlüsselter Form auszutauschen:

Gehen Sie zu WAN PARTNER + EDIT.

- Wählen Sie Encryption aus, z. B. DES 56.
- Gehen Sie zu WAN PARTNER ADD Advanced Settings Extended Interface Settings (optional).
- Wählen sie Encryption Key Negotiation aus, z. B. static (wenn Sie den Schlüssel selbst definieren möchten).
- Geben Sie gegebenenfalls Encryption Key (TX) ein, z. B. 1A35EFC17B56
- Geben Sie gegebenenfalls Encryption Key (RX) ein, z. B. 89A1288CD131
- Bestätigen Sie mit **SAVE**.
- Bestätigen Sie mit OK.
- Bestätigen Sie mit **SAVE**.

3.3 IPX

3.3.1 Standardwert für NetBIOS Broadcast replication wurde zu no geändert

Bisher war *yes* der voreingestellte Standardwert für **NetBIOS Broadcast replication** im Menü *IPX*. Mit Release 5.1.5 ist die Standardeinstellung *no*.

Mit diesen Einstellungen werden ungewollte WAN-Verbindungen, die Kosten verursachen, durch Senden von NetBIOS-Anfragen verhindert.

4 Behobene Fehler

4.1 Frame Relay

Beschreibung: Mit einer über Frame Relay konfigurierten Festverbindung (Point-to-Point) konnten keine Daten von **X4000** zur Gegenstelle übertragen werden. Ausgehende Pakete wurden von **X4000** falsch enkapsuliert und von der Gegenstelle verworfen.

Aktueller Stand: Dieser Fehler ist mit Release 5.1.5 behoben.

4.2 OSPF

Beschreibung: OSPF konnte nicht eingesetzt werden, da **X4000** Multicast-Frames senden, aber nicht empfangen konnte.

Aktueller Stand: Dieser Fehler ist mit Release 5.1.5 behoben.